Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Una endoscopia basada en fibra permite obtener imágenes del cerebro profundo

Por el equipo editorial de MedImaging en español
Actualizado el 01 Jan 2019
De acuerdo con un estudio nuevo, una sonda de imágenes fluorescentes en tiempo real captura la dinámica neuronal en las capas profundas del cerebro a una resolución de alrededor de una micra.

Desarrollada por investigadores del Instituto Leibniz de Tecnología Fotónica (IPTH; Alemania) y la Universidad de Edimburgo (Reino Unido), la sonda endoscópica de fibra multimodo (MMF) proporciona un sistema compacto, ultraestrecho y de alta velocidad para imágenes fluorescentes que puede alcanzar una resolución promedio de 1,18 µm en un campo de visión de 50 µm, lo que da como resultado imágenes de 7 kilopixeles a una velocidad de 3,5 cuadros por segundo. La sonda del grosor de un cabello también supera las limitaciones de tamaño dentro de los tejidos vivos, sin dejar un impacto estructural y funcional.

Imagen: Somas neuronales, procesos neuronales e imágenes de lapso de tiempo de una hemorragia en la corteza visual primaria (Fotografía cortesía de IPTH).
Imagen: Somas neuronales, procesos neuronales e imágenes de lapso de tiempo de una hemorragia en la corteza visual primaria (Fotografía cortesía de IPTH).

El sistema de imágenes compacto de alta velocidad se utilizó para resolver estructuras neuronales subcelulares de tamaño micrométrico en un modelo de ratón anestesiado con 5 ratones. El tamaño reducido de la sonda de imagen permitió la observación de estructuras profundas en diversos tejidos cerebrales, incluida la resolución in vivo de la conectividad neuronal en estructuras previamente inaccesibles, como la corteza visual y el hipocampo. Los investigadores sugieren que la técnica ayudará a explorar muchos vacíos de conocimiento, como los relacionados con la formación de la memoria y la percepción sensorial. El estudio fue publicado el 21 de noviembre de 2018 en la revista Light: Science and Applications.

“Hemos diseñado una ruta óptica altamente optimizada para imágenes basadas en fluorescencia de estructuras cerebrales profundas con resolución espacial micrométrica, causando un daño mínimo al tejido que rodea el área de penetración de la fibra”, concluyó el autor principal, Tomáš Čižmár, PhD, del IPTH, y colegas. “La implementación de los algoritmos de modelado de frente de onda más eficientes y, en la actualidad, el hardware más rápido posible para la modulación de la luz, proporciona una resolución espacial y temporal adecuada para la obtención de imágenes fluorescentes de estructuras subcelulares en tejidos vivos. El diseño robusto permite imágenes continuas por períodos de varias horas”.

Los dispositivos digitales de microespejo (DMD, por sus siglas en inglés) han abierto recientemente un nuevo rango de oportunidades en el campo del control holográfico de la propagación de la luz en medios complejos al aumentar las tasas de actualización de modulación de la luz en varios órdenes de magnitud. Como resultado, los focos detrás de un FMM ahora pueden escanearse a varias decenas de kHz, adquiriendo imágenes a velocidades que se acercan a las velocidades de video. Además, las imágenes basadas en fibra única no solo acortan el período de recuperación postoperatoria, sino que también eliminan la necesidad de implantar elementos de imagenología óptica.

Enlace relacionado:
Instituto Leibniz de Tecnología Fotónica
Universidad de Edimburgo



Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
CT Phantom
CIRS Model 610 AAPM CT Performance Phantom
New
Ceiling-Mounted Digital Radiography System
Radiography 5000 C
Miembro Plata
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers

Últimas Imaginología General noticias

Tecnología de imágenes proporciona nuevo enfoque innovador para diagnosticar y tratar cáncer de intestino

Puntuación de calcio coronario por TC predice ataques cardíacos y accidentes cerebrovasculares

Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC