Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

La radiómica predice los beneficios que los pacientes pueden obtener de la quimioterapia

Por el equipo editorial de MedImaging en español
Actualizado el 11 Apr 2019
Según un estudio nuevo, los datos recuperados de las imágenes de tomografía computarizada (TC) pueden ser capaces de predecir qué pacientes de cáncer de pulmón responderán a la quimioterapia.

Investigadores de la Universidad Case Western Reserve (CWRU; Cleveland, OH, EUA), la Clínica Cleveland (CC; OH, EUA) y otras instituciones, analizaron retrospectivamente datos de 125 pacientes con cáncer de pulmón no microcítico (CPNM) tratados con quimioterapia doble con platino basada en pemetrexed, para identificar el papel de las características de la textura de la radiómica, tanto dentro como fuera del nódulo, en la predicción del tiempo de progresión (TTP), la supervivencia global (SG) y la respuesta a la quimioterapia.

Imagen: Los mapas de características radiológicas muestran las diferencias entre las lesiones en los respondedores y los que no responden en la TC pretratamiento (Fotografía cortesía de la Clínica Cleveland).
Imagen: Los mapas de características radiológicas muestran las diferencias entre las lesiones en los respondedores y los que no responden en la TC pretratamiento (Fotografía cortesía de la Clínica Cleveland).

Los pacientes se dividieron al azar en dos conjuntos, con la restricción de que debía haber un número igual de respondedores y no respondedores en el conjunto de entrenamiento. El conjunto de entrenamiento comprendía 53 pacientes con CPNM, y el conjunto de validación comprendía 72 pacientes. Se utilizó un clasificador de aprendizaje automático entrenado, con características de textura radiológica extraídas de regiones intra y peritumorales de imágenes de TC sin contraste para predecir la respuesta a la quimioterapia. La firma de puntuación de riesgo radiómica se generó utilizando el operador de selección y contracción mínima absoluta, y también se evaluó la asociación de la firma radiómica con la TTP y la SG.

Los resultados mostraron que las características radiológicas derivadas del tumor y del área alrededor del tumor fueron capaces de diferenciar entre los pacientes que respondieron a la quimioterapia y los que no lo hicieron con una exactitud de 0,77. Además, las características radiológicas predijeron la TTP y la SG, y el análisis de la curva de decisión demostró que en términos de utilidad clínica, la firma de radiómica tenía un beneficio neto general más alto en la predicción de pacientes de alto riesgo que debían recibir tratamiento que las mediciones clínico-patológicas. El estudio fue publicado el 20 de marzo de 2019 en la revista Radiology: Artificial Intelligence.

“Este es el primer estudio que demuestra que los patrones de heterogeneidad o diversidad extraídos por computadora de fuera del tumor fueron predictivos de la respuesta a la quimioterapia”, dijo la coautora y autora principal, Mónica Khunger, MD, de la CC. “Esto es muy importante porque podría permitir predecir, antes de la terapia, qué pacientes con cáncer de pulmón probablemente respondan o no. Esto podría ayudar a identificar a los pacientes que probablemente no respondan a la quimioterapia para terapias alternativas como la radiación o la inmunoterapia”.

La radiómica es una extensión del diagnóstico asistido por computadora y se refiere a la cuantificación integral de los fenotipos tumorales mediante la extracción de un gran número de características de imagen cuantitativas para realizar minería de datos y medicina de precisión. En los últimos años, la radiografía ha extraído con éxito una variedad de características clínicamente relevantes, combinándolas en firmas, para determinar la probabilidad de malignidad de las lesiones de cáncer de mama identificadas.

Enlace relacionado:
Universidad Case Western Reserve
Clínica Cleveland



New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
Opaque X-Ray Mobile Lead Barrier
2594M
Portable X-ray Unit
AJEX130HN
Miembro Plata
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform

Últimas Imaginología General noticias

Nuevo escáner identifica daños cerebrales en pacientes con ictus en campos magnéticos más bajos

Herramienta de IA ofrece cribado oportunista para enfermedades cardíacas utilizando tomografías computarizadas reutilizadas

Las tomografías pulmonares detectan enfermedades cardíacas en pacientes sin síntomas cardíacos