Red neural artificial mejora la detección del cáncer de próstata

Por el equipo editorial de MedImaging en español
Actualizado el 06 May 2019
Un sistema nuevo de inteligencia artificial (IA) identifica y predice la agresividad del cáncer de próstata (CaP) con el mismo nivel de exactitud que los radiólogos experimentados.

Desarrollado en la Universidad de California, Los Ángeles (UCLA; EUA), FocalNet es una red neuronal convolucional (CNN) que utiliza un algoritmo con más de un millón de variables que se pueden entrenar. La CNN se entrenó con el uso de imágenes de resonancia magnética multiparamétricas (mp-RM) de 417 hombres con CaP antes de la prostatectomía laparoscópica asistida por robot (RALP). Para aprender cómo clasificar la agresividad del tumor utilizando la puntuación de Gleason (GS), los resultados se compararon con la muestra de patología real. Luego compararon los resultados del sistema de IA con las lecturas de los radiólogos de UCLA que tenían más de 10 años de experiencia.

Imagen: Las nuevas investigaciones sugieren que la inteligencia artificial pronto hará redundantes a los radiólogos (Fotografía cortesía de 123rf.com).

Los resultados revelaron que en el análisis de las características operativas del receptor de respuesta libre (FROC) para la detección de lesiones, FocalNet mostró una sensibilidad del 89,7% y 87,9% para las lesiones índice y las lesiones clínicamente significativas, respectivamente. Con la comparación con el desempeño prospectivo de los radiólogos que utilizan las guías de diagnóstico actuales, FocalNet demostró una sensibilidad de detección para lesiones clínicamente significativas (80,5%) comparable a la de los radiólogos con al menos 10 años de experiencia (83,9%). El estudio se presentó en el Simposio Internacional IEEE sobre Imágenes Biomédicas (ISBI), que se realizó en abril de 2019 en Venecia (Italia).

“La RM multiparamétrica se considera la mejor modalidad de imagenología no invasiva para diagnosticar el cáncer de próstata. Sin embargo, la mp-RM para el diagnóstico del CaP está actualmente limitada por los criterios de interpretación cualitativos o semicuantitativos, generando una variabilidad entre los diferentes lectores y una capacidad subóptima para evaluar la agresividad de la lesión”, concluyeron el autor principal, Kyunghyun Sung, del departamento de radiología de UCLA y colegas. “Las CNN son un método poderoso para aprender automáticamente las características discriminatorias para varias tareas, incluida la detección del cáncer”.

Las CNN utilizan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción y conversión de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.

Enlace relacionado:
Universidad de California, Los Ángeles


Últimas Imaginología General noticias