IA rivaliza con los radiólogos en la detección de la hemorragia intracraneal
Por el equipo editorial de MedImaging en español
Actualizado el 12 Nov 2019
Un estudio nuevo muestra que las redes neuronales convolucionales de inteligencia artificial (IA) (RNC) pueden alcanzar niveles de exactitud comparables a los de radiólogos altamente capacitados.Actualizado el 12 Nov 2019
Desarrollado por investigadores de la Universidad de California en San Francisco (UCSF; EUA) y la Universidad de California Berkeley (UCB; EUA), la red totalmente convolucional basada en parches (PatchFCN) funciona dividiendo una tomografía computarizada (TC) en parches más pequeños para mejorar la tasa de detección de las hemorragias intracraneales agudas (HIC) en las tomografías computarizadas de la cabeza. Según los investigadores, la segmentación ofrece muchas ventajas, incluida una mejor interpretación y métricas cuantificables para el pronóstico de la enfermedad. En términos simples, la hemorragia se define así como “cosas” (por ejemplo, agua) en lugar de “cosas” (por ejemplo, un automóvil), debido a su naturaleza fluida.
Desarrollado utilizando 4.396 tomografías computarizadas de la cabeza como modelo de aprendizaje, se comparó el desempeño de PatchFCN con el de cuatro radiólogos certificados por la Junta Americana de Radiología (ABR, por sus siglas en inglés) en un conjunto de pruebas de 200 TC de cabeza seleccionadas al azar. El modelo demostró una exactitud promedio del 99% para detectar hemorragias, la exactitud de clasificación más alta hasta la fecha. Además, PatchFCN proporcionó un rastreo detallado de cada hemorragia, destacando las anomalías directamente en la propia TC, ayudando a los neurocirujanos a confirmar visualmente las ubicaciones de las hemorragias y a juzgar la necesidad y el enfoque para la intervención quirúrgica. El estudio fue publicado el 21 de octubre de 2019 en la revista PNAS.
“Utilizando un enfoque sólido de supervisión a nivel de píxeles y un conjunto de datos de entrenamiento relativamente pequeño, demostramos una red de extremo a extremo que realiza la clasificación y segmentación conjunta. Demuestra la exactitud de clasificación más alta hasta la fecha, en comparación con otros enfoques de aprendizaje profundo, y también localiza simultáneamente estas anormalidades”, concluyó el autor principal, Weicheng Kuo, PhD, de la UCB. “Demostramos que identifica muchas anormalidades pasadas por alto por los expertos. Además, demostramos resultados prometedores para la segmentación de hemorragias multiclase, al tiempo que preservamos la detección exacta a nivel de examen”.
El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático de IA basados en representaciones de datos de aprendizaje, en oposición a los algoritmos específicos de la tarea. Involucra algoritmos RNC que usan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción, conversión y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.
Enlace relacionado:
Universidad de California en San Francisco
Universidad de California Berkeley
Últimas Imaginología General noticias
- Nuevo escáner identifica daños cerebrales en pacientes con ictus en campos magnéticos más bajos
- Herramienta de IA ofrece cribado oportunista para enfermedades cardíacas utilizando tomografías computarizadas reutilizadas
- Las tomografías pulmonares detectan enfermedades cardíacas en pacientes sin síntomas cardíacos