Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Algoritmo para la TC cardíaca cuantifica el calcio en la válvula aórtica

Por el equipo editorial de MedImaging en español
Actualizado el 25 Feb 2021
Un nuevo estudio muestra que un modelo de inteligencia artificial (IA) puede detectar automáticamente el calcio de la válvula aórtica (AVC, por sus siglas en inglés) en la TC cardíaca, y es superior a la clasificación visual de los radiólogos.

Desarrollado por investigadores de la Universidad Católica de Corea (Seúl, Corea del Sur), la Facultad de Medicina de la Universidad de Yonsei (Seúl, Corea del Sur) y otras instituciones, el algoritmo basado en aprendizaje profundo (DL) se entrenó y validó inicialmente en 452 tomografías computarizadas cardíacas no mejoradas, controladas por electrocardiograma. Luego se probó en un conjunto separado de 137 casos, con cada examen de TC anotado manualmente por un radiólogo con siete años de experiencia en imágenes cardiotorácicas, y se compararon el volumen de AVC y las puntuaciones de Agatston.

Imagen: La TC cardiaca con IA puede detectar la acumulación de calcio en la válvula aórtica (Fotografía cortesía de Getty Images)
Imagen: La TC cardiaca con IA puede detectar la acumulación de calcio en la válvula aórtica (Fotografía cortesía de Getty Images)

Los resultados revelaron que cuando se utilizó la medición manual de la puntuación AVC Agatston como punto de referencia, la exactitud de la puntuación AVC Agatston medida con DL para la clasificación del volumen de AVC fue del 97%, que fue mejor que la de los cuatro lectores radiólogos (77,8-89,9%). La exactitud del algoritmo de DL para la puntuación de Agatston fue del 92,9%. En general, se consideró que el modelo de DL era superior a los cuatro radiólogos para predecir casos graves de calcio en la válvula aórtica. El estudio fue publicado el 6 de febrero de 2021 en la revista European Journal of Radiology.

“Para las pruebas de desempeño del observador, cuatro radiólogos determinaron el grado AVC en dos rondas de lectura. El desempeño diagnóstico del volumen de AVC medido por DL y la puntuación de Agatston para clasificar la AVC grave se comparó con el de la evaluación de cada lector”, explicaron el autor principal, Suyon Chang, MD, de la Universidad Católica de Corea, y sus colegas. “Para validar el desempeño de la segmentación de AVC, se calculó el coeficiente de Dice [una estadística utilizada para medir la similitud de dos muestras]; después de aplicar el algoritmo DL, la puntuación del coeficiente de Dice fue 0,807”.

La puntuación de Agatston es una herramienta semiautomatizada para calcular el grado de calcificación de la arteria coronaria detectada por una tomografía computarizada de baja dosis sin contraste, que se realiza de forma rutinaria en pacientes a quienes les practican tomografías computarizadas cardíacas. Permite la estratificación temprana del riesgo, ya que los pacientes con una puntuación de Agatston alta (más de 160) tienen un mayor riesgo de sufrir un evento cardíaco adverso mayor (MACE). Aunque no permite la evaluación de placas blandas no calcificadas, ha mostrado una buena correlación con la coronariografía por TC con contraste.

Enlace relacionado:
Universidad Católica de Corea
Facultad de Medicina de la Universidad de Yonsei


New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Mini C-arm Imaging System
Fluoroscan InSight FD
New
Ultrasound Imaging System
P12 Elite
Portable X-ray Unit
AJEX130HN

Últimas Imaginología General noticias

Nuevo escáner identifica daños cerebrales en pacientes con ictus en campos magnéticos más bajos

Herramienta de IA ofrece cribado oportunista para enfermedades cardíacas utilizando tomografías computarizadas reutilizadas

Las tomografías pulmonares detectan enfermedades cardíacas en pacientes sin síntomas cardíacos