Algoritmo analiza tomografías computarizadas de cabeza y datos clínicos para predecir resultados en pacientes con TBI
Actualizado el 03 May 2022
La lesión cerebral traumática (TBI, por sus siglas en inglés) es uno de los problemas de salud pública más apremiantes y sigue siendo una de las principales causas de muerte en personas menores de 45 años. A los pacientes con TBI a menudo les toma dos semanas salir del coma e iniciar su recuperación, aunque a los pacientes con TBI grave generalmente se les quita el soporte vital dentro de las primeras 72 horas después de la admisión en el hospital. Reconociendo la necesidad de mejores formas de ayudar a los médicos, un equipo de científicos ha desarrollado un modelo de pronóstico que es el primero en utilizar escáneres cerebrales automatizados y aprendizaje automático para informar los resultados en pacientes con TBI grave.
El equipo de científicos de datos y cirujanos de neurotrauma de la Facultad de Medicina de la Universidad de Pittsburgh (UPMC, Pittsburgh, PA, EUA) demostró que su algoritmo avanzado de aprendizaje automático puede analizar escáneres cerebrales y datos clínicos relevantes de pacientes con TBI para predecir de forma rápida y precisa la supervivencia y recuperación a los seis meses de la lesión. El equipo aprovechó su experiencia en inteligencia artificial (IA) avanzada para desarrollar la herramienta sofisticada para comprender la naturaleza de la TBI de cada paciente en particular. El equipo desarrolló un modelo de IA personalizado que procesó múltiples escáneres cerebrales de cada paciente y lo combinó con una estimación de la gravedad del coma e información sobre los signos vitales, los análisis de sangre y la función cardíaca del paciente.
Es importante destacar que, debido a que las técnicas de imágenes cerebrales evolucionan con el tiempo y la calidad de la imagen puede variar drásticamente de un paciente a otro, los investigadores tuvieron en cuenta la irregularidad de los datos entrenando su modelo en diferentes protocolos de toma de imágenes. El modelo demostró su eficacia al predecir con precisión el riesgo de muerte y los resultados desfavorables de los pacientes seis meses después del incidente traumático. Para validar el modelo, los investigadores lo probaron con dos cohortes de pacientes: una de más de 500 pacientes con TBI grave tratados previamente en la UPMC y la otra, una cohorte externa de 220 pacientes de 18 instituciones de todo el país, a través del consorcio TRACK-TBI. La cohorte externa fue fundamental para probar la capacidad de predicción del modelo.
“Esperamos que esta investigación muestre que la IA puede proporcionar una herramienta para mejorar la toma de decisiones clínicas tempranamente cuando un paciente con TBI ingresa en la sala de emergencias, para lograr un mejor resultado para los pacientes”, dijeron los investigadores de la UPMC.
Enlaces relacionados:
UPMC
Últimas Imaginología General noticias
- Nuevo escáner identifica daños cerebrales en pacientes con ictus en campos magnéticos más bajos
- Herramienta de IA ofrece cribado oportunista para enfermedades cardíacas utilizando tomografías computarizadas reutilizadas
- Las tomografías pulmonares detectan enfermedades cardíacas en pacientes sin síntomas cardíacos