MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Aprendizaje profundo de radiómica basada en TC predice metástasis en ganglios linfáticos de tumores

Por el equipo editorial de MedImaging en español
Actualizado el 13 Feb 2024

Los tumores neuroendocrinos de páncreas no funcionales, aunque poco comunes, se tratan principalmente mediante intervención quirúrgica. El proceso de toma de decisiones sobre cirugía y otros tratamientos está fuertemente influenciado por la presencia o ausencia de metástasis en los ganglios linfáticos. Actualmente existe una falta de consenso en las directrices clínicas, especialmente en lo que respecta a la necesidad de cirugía en tumores menores de 2 cm. El diagnóstico preoperatorio de metástasis en los ganglios linfáticos mediante los métodos existentes no es suficientemente confiable. Para abordar esto, los investigadores han introducido un modelo de imágenes que combina la radiómica (la extracción de datos de imágenes radiológicas) y el aprendizaje profundo para predecir metástasis preoperatorias en los ganglios linfáticos en estos tumores. Este modelo innovador marca un importante paso adelante en la evaluación no invasiva de metástasis en los ganglios linfáticos, facilitando un diagnóstico más preciso y ayudando a determinar las estrategias de tratamiento más efectivas.

El equipo de la Universidad de Tsukuba (Tsukuba, Japón) desarrolló este modelo predictivo integrando características radiómicas obtenidas de tomografías computarizadas y resonancias magnéticas con técnicas avanzadas de aprendizaje profundo de inteligencia artificial. Sorprendentemente, este modelo mostró una tasa de precisión del 89 % en la predicción de metástasis en los ganglios linfáticos, que aumenta aún más al 91 % cuando se valida con datos de un hospital externo. Notablemente, su rendimiento se mantiene estable independientemente de si el tamaño del tumor es superior o inferior a 2 cm. Por tanto, este modelo sirve como una herramienta vital para predecir metástasis en los ganglios linfáticos, proporcionando a los cirujanos información esencial para seleccionar las intervenciones quirúrgicas y los planes de tratamiento más adecuados. El desarrollo tiene el potencial de mejorar significativamente los resultados de los pacientes en este desafiante campo médico.


Imagen: El modelo de IA ha demostrado una tasa de éxito del 89 % en la predicción de metástasis en los ganglios linfáticos (Fotografía cortesía de 123RF)
Imagen: El modelo de IA ha demostrado una tasa de éxito del 89 % en la predicción de metástasis en los ganglios linfáticos (Fotografía cortesía de 123RF)

Enlaces relacionados:
Universidad de Tsukuba


New
Prostate Cancer MRI Analysis Tool
DynaCAD Urology
New
Cylindrical Water Scanning System
SunSCAN 3D
Diagnostic Ultrasound System
MS1700C
New
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices

Últimas Imaginología General noticias

Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis

TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos

La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.