Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Algoritmo basado en IA reduce significativamente las tasas de error en la detección de embolia pulmonar

Por el equipo editorial de MedImaging en español
Actualizado el 14 Aug 2024

La embolia pulmonar (EP) ocupa el tercer lugar entre los síndromes cardiovasculares agudos más comunes a nivel mundial, con una prevalencia del 20 %. Sin tratamiento, la EP puede tener una tasa de mortalidad de hasta el 35 %, pero esta puede reducirse a entre el 2 % y el 15 % con un tratamiento rápido y adecuado. La principal herramienta de diagnóstico para la EP es la angiografía pulmonar por TC (CTPA), una prueba no invasiva que es ampliamente disponible y rápida de realizar, capaz de detectar émbolos con alta sensibilidad y especificidad. Sin embargo, el diagnóstico de EP sigue siendo complejo debido a la presencia de otras afecciones que pueden parecer similares en las exploraciones, como tumores, ganglios linfáticos, artefactos y nódulos pulmonares. Los estudios han indicado que los retrasos o fallos en el diagnóstico de EP son una de las principales causas de muertes prevenibles debido a diagnósticos perdidos. Ahora, un nuevo estudio ha demostrado que un algoritmo basado en inteligencia artificial (IA) puede reducir sustancialmente las tasas de diagnósticos perdidos de EP en tomografías computarizadas.

Para el estudio, investigadores de la Universidad de California Irvine (Irvine, CA, EUA) recopilaron retrospectivamente 1204 CTPA de 230 ciudades de EUA, utilizando 57 modelos de escáner diferentes de seis fabricantes. El estándar de oro, o la verdad de referencia, fue establecido por consenso entre tres radiólogos expertos certificados por la junta estadounidense. Estos casos también fueron evaluados mediante un algoritmo de IA llamado CINA-PE, diseñado para detectar e identificar ubicaciones sospechosas de EP. La efectividad del algoritmo se midió tanto por caso como por hallazgo.


Imagen: La solución basada en IA pudo detectar el 76 % de los casos de EP que inicialmente no se detectaron en los informes clínicos de CTPA (Foto cortesía de Angela Ayobi, et al.; Doi.org/10.1016/j.clinimag.2024.110245)
Imagen: La solución basada en IA pudo detectar el 76 % de los casos de EP que inicialmente no se detectaron en los informes clínicos de CTPA (Foto cortesía de Angela Ayobi, et al.; Doi.org/10.1016/j.clinimag.2024.110245)

El análisis incluyó casos en los que las EP estaban presentes pero no se informaron clínicamente, y que fueron identificados por la IA. De los 196 casos confirmados, 29 (15,6 %) no se reportaron inicialmente. El algoritmo de IA identificó con éxito 22 de estos 29 casos, reduciendo así la tasa de errores del 15,6 % al 3,8 % (7 casos perdidos de 186). Estos hallazgos, publicados en la revista Clinical Imaging sugieren que la integración de la IA en entornos clínicos puede mejorar la precisión del diagnóstico de EP, lo que conduce a mejores resultados para los pacientes mediante tratamientos oportunos. La implementación de estas herramientas de IA podría reducir significativamente la incidencia de diagnósticos pasados por alto o retrasados, mejorando la prestación de atención médica en general y el cuidado de los pacientes.

Enlaces relacionados:
Universidad de California, Irvine


New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
1.5T MRI Scanner
MAGNETOM Amira
New
Portable Color Doppler Ultrasound Scanner
DCU10
New
Mammography Analytics Platform
Unifi Analytics Software

Últimas Imaginología General noticias

Algoritmo de IA reduce la exposición innecesaria a la radiación en las TC neurorradiológicas traumáticas

Nueva solución mejora el control de calidad y diagnóstico basados en IA en imágenes médicas

Herramienta de IA detecta fracturas de la columna cervical a partir de tomografías computarizadas