Modelo de IA reconstruye escáner 3D de TC de vista dispersa con una dosis de rayos X mucho más baja
Actualizado el 27 Dec 2024
Si bien las tomografías computarizadas en 3D proporcionan imágenes detalladas de las estructuras internas, las 1.000 a 2.000 radiografías capturadas desde diferentes ángulos durante la exploración pueden aumentar el riesgo de cáncer, especialmente para los pacientes vulnerables. Las tomografías computarizadas (TC) de vista dispersa, que utilizan menos proyecciones de rayos X (tan pocas como 100), reducen significativamente la exposición a la radiación, pero presentan desafíos para la reconstrucción precisa de imágenes.
Recientemente, las técnicas de aprendizaje supervisado, una forma de aprendizaje automático que entrena algoritmos con datos etiquetados, han mejorado la velocidad y la resolución de las reconstrucciones de imágenes de TC de vista dispersa y de resonancia magnética (RM) con muestras insuficientes. Sin embargo, etiquetar grandes conjuntos de datos de entrenamiento es un proceso que consume mucho tiempo y es costoso. Ahora, los investigadores han desarrollado un nuevo marco que funciona de manera eficiente con imágenes 3D, haciendo que el método sea más aplicable tanto para la TC como para la RM.
Este nuevo marco, llamado DiffusionBlend, fue desarrollado por investigadores de la Facultad de Ingeniería de la Universidad de Michigan (UM; Ann Arbor, MI, EUA). Emplea un modelo de difusión, una técnica de aprendizaje autosupervisado que aprende una distribución de datos previa, para permitir la reconstrucción de TC en 3D de vista dispersa a través de un muestreo posterior.
DiffusionBlend aprende correlaciones espaciales entre cortes de imágenes 2D cercanos, conocidos como difusión previa de parches 3D, y luego combina las puntuaciones de estos parches de múltiples cortes para crear el volumen completo de la imagen de TC en 3D. Cuando se probó en un conjunto de datos públicos de TC en 3D de vista dispersa, DiffusionBlend superó varios métodos de referencia, incluidas cuatro técnicas de difusión con ocho, seis y cuatro vistas, logrando una calidad de imagen computacional comparable o superior.
Para mejorar aún más su practicidad, se aplicaron métodos de aceleración, reduciendo el tiempo de reconstrucción de TC de DiffusionBlend a una hora, en comparación con las 24 horas requeridas por los métodos anteriores. Si bien los métodos de aprendizaje profundo a veces pueden introducir artefactos visuales (imágenes generadas por IA de características inexistentes), esto puede ser problemático para el diagnóstico del paciente. Para mitigar este problema, los investigadores emplearon la optimización de la consistencia de los datos, específicamente utilizando el método de gradiente conjugado, y evaluaron qué tan bien las imágenes generadas coincidían con las mediciones reales utilizando métricas como la relación señal-ruido.
"Estamos todavía en las primeras etapas de esto, pero hay mucho potencial aquí. Creo que los principios de este método pueden extenderse a cuatro dimensiones, tres dimensiones espaciales más el tiempo, para aplicaciones como la obtención de imágenes del corazón latiendo o las contracciones del estómago", dijo Jeff Fessler, profesor distinguido de Ingeniería Eléctrica y Ciencias de la Computación William L. Root en la UM y coautor correspondiente del estudio.
Enlaces relacionados:
University of Michigan Engineering
Últimas Imaginología General noticias
- Nuevo escáner identifica daños cerebrales en pacientes con ictus en campos magnéticos más bajos
- Herramienta de IA ofrece cribado oportunista para enfermedades cardíacas utilizando tomografías computarizadas reutilizadas
- Las tomografías pulmonares detectan enfermedades cardíacas en pacientes sin síntomas cardíacos