Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Un estudio encuentra que la IA y los radiólogos logran mejores resultados cuando trabajan juntos

Por el equipo editorial de MedImaging en español
Actualizado el 01 Nov 2018
Un estudio realizado por investigadores de los Institutos de Ciencias Médicas de toda India ({AIIMS}Nueva Delhi, India) descubrió que cuando los radiólogos trabajan junto con la inteligencia artificial (IA) se pueden lograr mejores resultados, ayudando en la toma de decisiones basadas en casos.

En los últimos tiempos, ha habido muchas exageraciones acerca de que la IA hace que los radiólogos sean redundantes. El equipo de investigadores de AIIMS evaluó un simple flujo de trabajo de IA aumentada con radiólogo para demostrar si la inclusión de la opinión de un radiólogo en un algoritmo de IA haría que el algoritmo logre una mayor exactitud en comparación con un algoritmo entrenado en parámetros de imagen únicamente. Para el estudio, los conjuntos de datos de BI-RADS de fuente abierta se evaluaron para comprobar si la inclusión de la opinión de un radiólogo (en forma de clasificación de BI-RADS), además de los parámetros de imagen, mejoró la exactitud de la predicción de la histología utilizando tres algoritmos de aprendizaje automático vis-à-vis los algoritmos utilizando solo los parámetros de las imágenes.

De acuerdo con los resultados del estudio, los modelos que utilizan la clasificación BI-RADS proporcionada por el radiólogo se desempeñaron significativamente mejor que los modelos que no los usan. Los investigadores concluyeron que la IA y los radiólogos que trabajan juntos pueden lograr mejores resultados, ayudando en la toma de decisiones basadas en casos. Sin embargo, según los investigadores, una evaluación adicional de las métricas involucradas en el manejo de los predictores por los algoritmos de IA proporcionaría nuevos conocimientos sobre las imágenes.

Enlace relacionado:
AIIMS


NMUS & MSK Ultrasound
InVisus Pro
New
Diagnostic Ultrasound System
MS1700C
Portable Color Doppler Ultrasound Scanner
DCU10
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Últimas Industria noticias

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

Mindray se asocia con TeleRay para optimizar la entrega de ecografías

Philips y Medtronic se asocian para el cuidado de accidentes cerebrovasculares