Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Una técnica de aprendizaje profundo podría revelar características transparentes en las imágenes médicas

Por el equipo editorial de MedImaging en español
Actualizado el 10 Jan 2019
Los ingenieros del Instituto Tecnológico de Massachusetts (Cambridge, MA, EUA) han desarrollado una técnica de aprendizaje profundo que puede revelar imágenes de características transparentes u objetos que son casi imposibles de descifrar en la oscuridad casi total.

Las redes neuronales profundas se han aplicado ampliamente en el campo de la visión por ordenador y el reconocimiento de imágenes. Los ingenieros del MIT desarrollaron recientemente redes neuronales para reconstruir objetos transparentes en imágenes tomadas con mucha luz. Sin embargo, se convirtieron en los primeros en utilizar redes neuronales profundas en experimentos para revelar objetos invisibles en imágenes tomadas en la oscuridad.

Imagen: A partir de un grabado original (extremo derecho), los ingenieros produjeron una fotografía en la oscuridad (arriba a la izquierda), luego intentaron reconstruir el objeto utilizando primero un algoritmo basado en la física (arriba a la derecha), luego una red neuronal entrenada (abajo a la izquierda ), antes de combinar la red neuronal con el algoritmo basado en la física para producir la reproducción más clara y exacta (abajo a la derecha) del objeto original (Fotografía cortesía de MIT).
Imagen: A partir de un grabado original (extremo derecho), los ingenieros produjeron una fotografía en la oscuridad (arriba a la izquierda), luego intentaron reconstruir el objeto utilizando primero un algoritmo basado en la física (arriba a la derecha), luego una red neuronal entrenada (abajo a la izquierda ), antes de combinar la red neuronal con el algoritmo basado en la física para producir la reproducción más clara y exacta (abajo a la derecha) del objeto original (Fotografía cortesía de MIT).

En su estudio, los investigadores reconstruyeron objetos transparentes a partir de imágenes de esos objetos, tomadas en condiciones de casi negro intenso utilizando una “red neuronal profunda”. Esta técnica de aprendizaje automático consiste en entrenar una computadora para asociar ciertas entradas con salidas específicas, en este caso imágenes oscuras, granuladas, de objetos transparentes y de los objetos mismos.

Los investigadores entrenaron una computadora para reconocer más de 10.000 grabados de vidrio transparente, basados en imágenes extremadamente granuladas de esos patrones. Las imágenes se tomaron en condiciones de muy poca luz, con aproximadamente un fotón por píxel, mucho menos luz de lo que una cámara registraría en una habitación oscura y sellada. Luego mostraron a la computadora una nueva imagen granulada, no incluida en los datos de entrenamiento, y encontraron que aprendió a reconstruir el objeto transparente que la oscuridad había ocultado.

Los investigadores repitieron sus experimentos con un conjunto de datos totalmente nuevo, que consta de más de 10.000 imágenes de objetos más generales y variados, incluidas personas, lugares y animales. Después del entrenamiento, los investigadores alimentaron la red neuronal con una imagen completamente nueva, tomada en la oscuridad, de un grabado transparente de una escena con góndolas atracadas en un muelle. Una vez más, encontraron que la reconstrucción informada por la física produjo una imagen más exacta del original, en comparación con las reproducciones sin la ley física incluida. Los resultados demuestran que se pueden usar redes neuronales profundas para iluminar características transparentes, como tejidos y células biológicas, en imágenes tomadas con muy poca luz.

“Hemos demostrado que el aprendizaje profundo puede revelar objetos invisibles en la oscuridad”, dijo el autor principal del estudio, Alexandre Goy. “Este resultado es de importancia práctica para que las imágenes médicas reduzcan la exposición de los pacientes a la radiación dañina y para las imágenes astronómicas”.

Enlace relacionado:
Instituto Tecnológico de Massachusetts


New
Transducer Covers
Surgi Intraoperative Covers
Radiation Therapy Treatment Software Application
Elekta ONE
New
Digital Radiography System
DigiEye 330
Miembro Plata
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform

Últimas Industria noticias

Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual

Mindray se asocia con TeleRay para optimizar la entrega de ecografías

Philips y Medtronic se asocian para el cuidado de accidentes cerebrovasculares