Un mapa de ruta nuevo define las prioridades en la investigación de la IA para la imagenología médica
Por el equipo editorial de MedImaging en español
Actualizado el 01 May 2019
Un informe que establece una hoja de ruta describiendo las prioridades en la investigación fundamental y traslacional en inteligencia artificial (IA) para la imagenología médica fue publicado en la revista Radiology. A principios del verano, se publicará un segundo informe sobre la investigación traslacional en IA que se enfoca en problemas de la IA en el mundo real, en la revista Journal of the American College of Radiology (JACR).Actualizado el 01 May 2019
Ambos informes son el resultado de un taller convocado en agosto pasado por el Instituto Nacional de Imágenes Biomédicas y Bioingeniería en el NIH para explorar el futuro de la IA en la imagenología médica. El taller reunió a sociedades especializadas del gobierno, la industria, la academia y la radiología para crear una hoja de ruta que establece un camino para la investigación fundamental en IA y la investigación traslacional necesaria para entregar la IA a la práctica clínica. Los organizadores del taller esperan continuar con su trabajo juntos para continuar identificando las lagunas de conocimiento y priorizar las necesidades de investigación para promover el desarrollo de la inteligencia artificial para la imagenología médica.
“Todos apreciamos que la NIBIB haya sido el anfitrión de este importante evento. El taller fue una gran oportunidad para que la comunidad de radiología se reuniera para discutir las necesidades y los desafíos de la investigación de inteligencia artificial que enfrenta nuestra especialidad y desarrollar una hoja de ruta para la investigación futura en imágenes médicas”, dijo Bibb Allen, MD, copresidente del taller y director médico del Instituto de Ciencia de Datos de la ACR. “Esperamos poder publicar la hoja de ruta para la investigación traslacional, incluidos los métodos para resolver algunos de estos problemas de la IA en el mundo real”.
“Este taller de colaboración entre los NIH y las principales organizaciones de radiología fue fundamental para reunir a las partes interesadas clave para definir las oportunidades atractivas para la investigación de la IA en las imágenes médicas”, dijo Curtis P. Langlotz, MD, PhD, copresidente del taller, profesor de radiología e informática biomédica, director del Centro de Inteligencia Artificial en Medicina e Imagenología en la Universidad de Stanford, y enlace de la junta de la RSNA para la tecnología de la información y el congreso anual. “Los resultados publicados del evento ayudan a preparar el escenario para que nuestros colegas y otros grupos interesados trabajen para llevar estas innovaciones a los pacientes”.
“El taller amplió nuestro conocimiento colectivo sobre la utilidad potencial de la Inteligencia Artificial para mejorar la eficiencia y la exactitud de los sistemas de diagnóstico”, dijo Steven E. Seltzer, MD, FACR, investigador de políticas de salud y ciencias de la Academia de Radiología e Investigación de Imágenes Biomédicas. “Si en el futuro, la necesidad de un diagnóstico de exactitud requiere una recopilación de imágenes de los sistemas de radiología, patología y ‘ómica’ en una ‘Cabina de mando’ de diagnóstico, el observador humano necesitará una ayuda considerable de las computadoras para extraer información óptima de múltiples fuentes dispares. La IA puede ser un ingrediente clave en este proceso”.
Enlace relacionado: