Imagenología de rayos X ofrece nuevas pistas sobre daño óseo
Por el equipo editorial de MedImaging en español
Actualizado el 02 May 2013
Las fracturas óseas, desde los atletas hasta los individuos que sufren de osteoporosis, son normalmente el resultado de la acumulación de grietas minúsculas en el tiempo—surcos invisibles de daño, que cuando se unieron, produjeron esa fractura. Usando técnicas novedosas de rayos-x, los investigadores han revelado detalle a nivel celular de lo que ocurre en el tiempo cuando el hueso tiene estrés repetitivo, visualizando el daño a escalas muy pequeñas nunca vistas. Su investigación puede ofrecer conocimientos sobre cómo podrían evitarse las fracturas óseas.Actualizado el 02 May 2013
El Dr. Marjolein van der Meulen, profesor de ingeniería biomédica de la Universidad de Cornell (Ithaca, NY, EUA), realizó el estudio, que fue publicado en-línea el 5 de Marzo de 2013, en la revista PLOS One, usando la microscopía de transmisión de rayos-x en la Stanford Synchrotron Radiation Lightsource, parte del Laboratorio Acelerador Nacional de los Estados Unidos SLAC (Menlo Park, CA, EUA).
Usando los rayos-x de alta energía en el sincrotron de SLAC, los investigadores generaron imágenes de daño en hueso de oveja a una resolución de 30 nm—varias veces mejor que la imagenología estándar por medio de micro-tomografía computarizada de rayos-x (micro-TC), que tiene óptimamente 2–4 micras de resolución.
“En la investigación esquelética, las personas han estado tratando de entender el papel del daño”, dijo el Dr. van der Meulen, cuya investigación es llamada mecanobiología—cómo la mecánica se entrecruza con los procesos biológicos. “Una de las cosas que las personas han creído es que el daño es uno de los estímulos que las células están detectando”.
La incapacidad de las células para reparar el micro-daño en el tiempo finalmente se añade a la falla y el rompimiento del hueso, según el Dr. van der Meulen. Hasta ahora, los métodos de visualización del micro-daño estaban limitados a imágenes de baja resolución. Características óseas más detalladas, como las áreas pequeñas llamadas lagunas, donde habitan las células, y los ríos microscópicos entre ellas, llamadas canalículos, no eran visibles.
La imagenología involucró una preparación especial de las muestras óseas de oveja realizada por el estudiante de postgrado y primer autor, Dr. Garry Brock. Primero cortaron muestras semejantes a un fósforo de 2-mm2. Los fósforos fueron “lesionados” en el laboratorio a varios niveles: Algunos recibieron 20.000 ciclos de carga en flexión; otros recibieron una dosis única de carga; y a otros se les hizo muescas antes de cargarlos. Todas las muestras fueron tratadas con una tinción acetato-uranil-plomo, negativa a los rayos-x, que se filtra en la porosidad causada por la lesión en el tejido óseo. Luego las secciones del segmento cargado fueron pulidas hasta un espesor de 5 micras.
Se vio un porcentaje mayor de tinción en las secciones sometidas a tensión repetitiva. En vez de ver superficies nuevas formadas por el daño (fracturas) como se esperaba, los investigadores observaron daño en las estructuras celulares. Los rayos-x recogieron el colorante dentro de las estructuras intactas existentes, como la laguna donde las células se sientan, y en el canalículo. “El tejido no se está rompiendo, pero en vez de eso, hay manchas dentro de las células”, dijo el Dr. Brock.
En las personas osteoporóticas, incluyendo muchas mujeres post-menopáusicas, las fracturas generalmente ocurren en el antebrazo, columna, y cadera. Los investigadores están tratando de determinar por qué esas fracturas ocurren estudiando cambios a nano y micro-escala en el tejido óseo. También están examinando la posibilidad de evaluar si una clase de medicamentos para la osteoporosis llamados bifosfonatos, que disminuyen la tasa total de fracturas de cadera pero pueden generar “fracturas femorales atípicas” que afectan o no los procesos de lesión a nano-escala. Esas fracturas inusuales ocurren en sitios que típicamente no se fracturan con la osteoporosis como en medio del eje óseo. La tecnología de visualización de daño nuevo puede dar perspectivas nuevas en estudios futuros, según los investigadores.
Enlace relacionado:
Cornell University