Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Nueva técnica de rayos X ofrece una mejor resolución

Por el equipo editorial de MedImaging en español
Actualizado el 19 Sep 2017
Un nuevo estudio propone que la imagenología de difracción incoherente (IDI) podría mejorar significativamente la calidad de las imágenes de rayos X en comparación con la de los métodos convencionales.
 

Image
Image
Desarrollado por investigadores de la Universidad Friedrich Alexander (FAU; Erlangen-Nuremberg, Alemania), el Deutsches Elektronen-Synchrotron (DESY; Hamburgo, Alemania) y la Universidad de Hamburgo (Alemania), la IDI mide las correlaciones de intensidad de la radiación de rayos X de dispersión incoherente con el fin de obtener imágenes de la disposición tridimensional (3D) completa de los átomos en dispersión. Los fotones de rayos X dispersos incoherentemente son “instantáneas” resueltas en el tiempo con duraciones de no más de unos pocos femtosegundos, unas cuatrillonesimas de segundo.
 
Cuando se analizan las instantáneas de rayos X, extremadamente cortas, se puede obtener información sobre la disposición de los átomos, pero estos intervalos de tiempo tan cortos sólo han sido posibles, hasta ahora, usando láseres de electrones libres. Aprovechando la DID con estos láseres, es posible obtener resoluciones significativamente más altas que las disponibles con la imagenología de difracción coherente convencional y con la cristalografía, incluyendo información en 3D suplementaria en el espacio de Fourier durante la orientación de la muestra única.
 
El nuevo método utiliza luz de fluorescencia, que proporciona una señal mucho más fuerte que también se dispersa a ángulos significativamente mayores, lo que permite una información espacial más detallada. Además, se pueden usar filtros para medir la luz de especies atómicas específicas, lo que permite determinar la posición de átomos individuales en las moléculas y proteínas, con una resolución significativamente mayor en comparación con las imágenes coherentes usando la luz de rayos X de la misma longitud de onda. El estudio se publicó el 31 de julio de 2017 en la revista Physical Review Letters.
 
“Con la luz de rayos X, en la mayoría de los casos, la dispersión incoherente domina, por ejemplo, en forma de fluorescencia que es el resultado de la absorción de fotones y de la emisión subsiguiente”, dijo el autor principal, Anton Classen, PhD, del grupo de Quantum Optics and Quantum Information de la FAU. “Esto crea un fondo difuso que no se puede utilizar para la imagenología coherente, y reduce la fidelidad de la reproducción de los métodos coherentes”.
 
Una analogía de ondas de luz de dispersión coherente sería las ondas de agua generadas por obstáculos en un arroyo que fluye lentamente, que generan un patrón de difracción característico formado por la estructura subyacente que se puede derivar determinando la relación de fase entre los fotones incidentes y los reflejados. Siguiendo con la analogía del agua, esto corresponde a las ondas de agua que se desvían de los obstáculos sin vórtices o turbulencias. Pero si la dispersión de fotones es incoherente, la relación de fase fija hace imposible determinar la disposición de los átomos, como en las aguas turbulentas.
 

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
40/80-Slice CT System
uCT 528
New
Mobile Barrier
Tilted Mobile Leaded Barrier
Wall Fixtures
MRI SERIES

Últimas Radiografía noticias

Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías

Sensores de rayos X orgánicos imprimibles podrían transformar el tratamiento del cáncer

Detector altamente sensible y plegable hace que la radiografía sea más segura