Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

IA asistida por médico mejora detección del síndrome de dificultad respiratoria aguda en las radiografías de tórax

Por el equipo editorial de MedImaging en español
Actualizado el 26 Apr 2023

El síndrome de dificultad respiratoria aguda (SDRA) es una enfermedad crítica altamente mortal, con un diagnóstico que a menudo se pasa por alto o se retrasa, lo que da como resultado que los pacientes no reciban atención basada en la evidencia. Los investigadores ahora han desarrollado un algoritmo de aprendizaje profundo para ayudar a los médicos a identificar el SDRA de manera más rápida y confiable en las radiografías de tórax.

En un nuevo estudio, el equipo de investigación de la Universidad de Michigan (Ann Arbor, MI, EUA) evaluó las fortalezas y debilidades del modelo de IA en comparación con médicos expertos e investigó cómo ambos podrían trabajar juntos para mejorar el diagnóstico del SDRA y los resultados de los pacientes. El equipo utilizó 414 radiografías de tórax de pacientes hospitalizados adultos con insuficiencia respiratoria hipóxica aguda, y puso al modelo de IA y a un grupo de médicos con experiencia en la interpretación de radiografías de tórax a trabajar lado a lado en la detección de SDRA. Evaluaron el rendimiento general en la detección de SDRA, la precisión basada en la dificultad de interpretación de rayos X y el nivel de certeza del médico/IA en sus interpretaciones. El modelo de IA demostró un rendimiento general más alto en la detección de hallazgos de SDRA que los médicos. Sin embargo, los investigadores descubrieron que el modelo de IA superó a los médicos en la interpretación de radiografías de tórax menos desafiantes, mientras que los médicos fueron mejores en la revisión de las más difíciles. Al calificar su confianza en la interpretación de la radiografía de tórax, se encontró que uno tenía menos confianza mientras que el otro se desempeñó mejor.


Imagen: La colaboración de la IA con los médicos puede mejorar la precisión del diagnóstico de SDRA (Fotografía cortesía de Freepik)
Imagen: La colaboración de la IA con los médicos puede mejorar la precisión del diagnóstico de SDRA (Fotografía cortesía de Freepik)

El análisis del equipo sugiere que la IA y la experiencia médica podrían complementarse entre sí, reduciendo así las tasas de diagnóstico erróneo del SDRA. Probaron varias estrategias en las que una IA y un médico podrían colaborar para lograr el mejor rendimiento. Un método efectivo implicó que el sistema de inteligencia artificial revisara primero la radiografía de tórax y luego remitiera a los médicos si no estaba seguro. Este método permitió a los médicos revisar un subconjunto más pequeño de radiografías de tórax, lo que redujo la carga de trabajo y les permitió concentrarse en casos más desafiantes. Tal método podría transformar en última instancia la prestación de atención a los pacientes con SDRA en la unidad de cuidados intensivos (UCI).

"Comprender cómo poner en funcionamiento de manera efectiva los sistemas de IA en la UCI es realmente importante", dijo el autor principal del estudio, el Dr. Michael Sjoding, director asociado del Instituto Weil y profesor asociado de Medicina Pulmonar y de Cuidados Críticos. “Estos sistemas son cada vez más comunes, pero hasta ahora no se ha trabajado mucho para entender cómo llevarlos al lado de la cama para ayudar a los médicos a brindar la mejor atención. Este trabajo abre la puerta a un futuro en el que los sistemas de IA y los expertos humanos trabajen juntos para brindar una excelente atención del SDRA a todos los pacientes”.

"Debido a que las decisiones médicas suelen ser importantes, sabemos que es probable que los pacientes y los médicos no acepten reemplazar por completo la experiencia humana con algoritmos de IA", agregó la Dra. Negar Farzaneh, investigadora y científica de datos del Instituto Weil, así como autora principal de el estudio. “Sin embargo, las estrategias en las que el modelo complementa el diagnóstico de un médico, en lugar de reemplazarlo, podrían ser una alternativa más razonable. Nuestro trabajo sugiere que estas colaboraciones, cuando se optimizan, pueden dar como resultado una mayor precisión diagnóstica y permitir que los pacientes reciban una atención más consistente”.

Enlaces relacionados:
Universidad de Michigan  


New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition
New
40/80-Slice CT System
uCT 528
LED-Based X-Ray Viewer
Dixion X-View

Últimas Radiografía noticias

Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías

Sensores de rayos X orgánicos imprimibles podrían transformar el tratamiento del cáncer

Detector altamente sensible y plegable hace que la radiografía sea más segura