Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Aprendizaje profundo detecta fracturas en imágenes de rayos X con una precisión del 99%

Por el equipo editorial de MedImaging en español
Actualizado el 09 May 2024

En todo el mundo, 1.700 millones de personas padecen afecciones musculoesqueléticas que pueden causar dolor y discapacidad importantes. Estas condiciones a menudo requieren decisiones de diagnóstico y tratamiento rápidas y precisas, particularmente en escenarios de emergencia. Aunque se han explorado tecnologías de aprendizaje profundo para ayudar en la toma de decisiones médicas, problemas como el bajo rendimiento y la opacidad han obstaculizado su eficacia para identificar problemas relacionados con el hombro, como fracturas, artritis o deformidades en imágenes de rayos X. Ahora, los científicos han creado un marco de aprendizaje profundo que puede identificar anomalías del hombro, como fracturas, en imágenes de rayos X con una notable precisión del 99%, ayudando a los médicos a tomar decisiones rápidas y precisas durante las emergencias.

Para construir el marco de aprendizaje profundo, los científicos de la Universidad Tecnológica de Queensland (QUT, Brisbane, Australia) emplearon una técnica de fusión de características que combina características derivadas de siete modelos neuronales profundos. El éxito de las técnicas de clasificación basadas en el aprendizaje automático depende en gran medida de características totalmente descriptivas para diferenciar con precisión varias clases. La técnica de fusión de características mejora los resultados de los modelos individuales al proporcionar una descripción completa de los datos internos, lo que da como resultado una representación compacta de las características fusionadas y, por lo tanto, mejora la precisión del diagnóstico de la tarea.


Imagen: el aprendizaje profundo permite decisiones más rápidas y precisas sobre el tratamiento de anormalidades de los hombros (foto cortesía de 123RF)
Imagen: el aprendizaje profundo permite decisiones más rápidas y precisas sobre el tratamiento de anormalidades de los hombros (foto cortesía de 123RF)

Al entrenar y evaluar individualmente siete redes neuronales convolucionales profundas para la extracción de características, los investigadores pudieron fusionar estas características extraídas en un conjunto de datos unificado para entrenar clasificadores de aprendizaje automático. Este marco propuesto logró una asombrosa tasa de precisión del 99,2 %, superando tanto a los métodos computacionales anteriores como a la precisión diagnóstica de los médicos humanos, incluidos los cirujanos ortopédicos y radiólogos, que lograron una tasa de precisión del 79 %.

"El marco propuesto ha sido validado frente a varios sesgos potenciales para garantizar una toma de decisiones confiable", dijo el coinvestigador profesor YuanTong Gu de la QUT, vicerrector adjunto y director de la Escuela de Ingeniería Mecánica, Médica y de Procesos de QUT. "Esta herramienta puede proporcionar decisiones en tiempo real, lo cual es crucial para un problema de este tipo".

Enlaces relacionados:
Universidad Tecnológica de Queensland


Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound System
P20 Elite
New
Remote Controlled Digital Radiography and Fluoroscopy System
Eco Track-DRF - MARS 50/MARS50+/MARS 65/MARS 80
New
Compact C-Arm
Arcovis DRF-C S21

Últimas Radiografía noticias

Asistencia de IA mejora detección del cáncer de mama al reducir los falsos positivos

La inteligencia artificial podría impulsar la adopción clínica de la radiografía digital dinámica de tórax

Mamografía 3D reduce casi a la mitad la incidencia del cáncer de mama de intervalo