Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

IA detecta la enfermedad del hígado graso a partir de radiografías de tórax

Por el equipo editorial de MedImaging en español
Actualizado el 04 Jul 2025

Se cree que la enfermedad del hígado graso, que resulta de la acumulación excesiva de grasa en el hígado, afecta aproximadamente a una de cada cuatro personas a nivel mundial. Si no se trata a tiempo, puede progresar a enfermedades graves como cirrosis y cáncer de hígado, lo que subraya la importancia de la detección y el tratamiento tempranos. Las herramientas de diagnóstico estándar actuales para la enfermedad del hígado graso incluyen ecografías, tomografías computarizadas (TC) y resonancias magnéticas (RM), todas las cuales requieren equipos costosos y especializados, e instalaciones especializadas.

En cambio, las radiografías de tórax son más comunes, rentables y con mínima radiación. Aunque se emplean principalmente para evaluar los pulmones y el corazón, también permiten visualizar parcialmente el hígado, lo que permite identificar signos de hígado graso. A pesar de este potencial, la relación entre las radiografías de tórax y esta afección ha sido poco estudiada en profundidad. Ahora, investigadores han creado un modelo de IA capaz de identificar el hígado graso mediante imágenes de radiografías de tórax.


Imagen: proceso de toma de decisiones de IA con imágenes de radiografías de tórax (foto cortesía de la Universidad Metropolitana de Osaka)
Imagen: proceso de toma de decisiones de IA con imágenes de radiografías de tórax (foto cortesía de la Universidad Metropolitana de Osaka)

En un estudio retrospectivo, un equipo de investigación de la Universidad Metropolitana de Osaka (Osaka, Japón) utilizó 6.599 radiografías de tórax de 4.414 pacientes para desarrollar su modelo de IA basado en puntuaciones del parámetro de atenuación controlada (CAP). Sus resultados, publicados en Radiology Cardiothoracic Imaging, demostraron que el modelo de IA alcanzó una alta precisión, con un área bajo la curva ROC (AUC) que oscilaba entre 0,82 y 0,83.

“El desarrollo de métodos de diagnóstico que utilicen radiografías de tórax, fácilmente accesibles y de bajo costo, tiene el potencial de mejorar la detección de la enfermedad del hígado graso. Esperamos que pueda implementarse en la práctica en el futuro”, afirmó la profesora asociada Sawako Uchida-Kobayashi, quien dirigió la investigación.

Enlaces relacionados:
Universidad Metropolitana de Osaka


Radiology Software
DxWorks
New
Half Apron
Demi
Multi-Use Ultrasound Table
Clinton
New
Breast Localization System
MAMMOREP LOOP

Últimas Radiografía noticias

IA detecta enfermedades cardíacas ocultas en TC de tórax existentes
04 Jul 2025  |   Radiografía

Modelo de IA ultraligero rompe barreras en el diagnóstico del cáncer de pulmón
04 Jul 2025  |   Radiografía

Herramienta de IA para radiología identifica condiciones potencialmente mortales en milisegundos
04 Jul 2025  |   Radiografía