Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Sistema impulsado por IA combina resonancia magnética y tecnología de ultrasonido para diagnóstico de endometriosis rápido y no invasivo

Por el equipo editorial de MedImaging en español
Actualizado el 21 Aug 2023

La endometriosis, una afección dolorosa en la que crece tejido sensible más allá del útero, afecta a millones de mujeres en todo el mundo. El diagnóstico de endometriosis a menudo enfrenta demoras, con un período de espera promedio de 7 a 12 años para la mayoría de las mujeres. El método de diagnóstico actual implica realizar una cirugía mínimamente invasiva (laparoscópica) para inspeccionar visualmente los depósitos endometriales en el abdomen, posteriormente confirmados mediante análisis microscópico. Sin embargo, la cirugía presenta desafíos, problemas de accesibilidad y, a menudo, incurre en demoras. El largo proceso de diagnóstico de la endometriosis puede contribuir a ansiedad, depresión y la fatiga, y requiere consultas con numerosos profesionales de la salud.

Ahora, un nuevo estudio que utiliza el aprendizaje automático para combinar digitalmente de forma automática las capacidades de diagnóstico de las exploraciones pélvicas y la resonancia magnética nuclear (RMN) para identificar lesiones de endometriosis, busca acortar el proceso de diagnóstico y reducir la dependencia de la cirugía. El nuevo sistema de inteligencia artificial (IA) con tecnología desarrollada por la Universidad de Adelaida (Adelaide, Australia) en asociación con investigadores de la Universidad de Surrey (Guildford, Reino Unido) podría mejorar la calidad de vida de millones de personas que padecen endometriosis. El sistema IMAGENDO desarrollado por los investigadores aprovecha la IA para analizar datos de ecografías y resonancias magnéticas, lo que reduce significativamente el tiempo necesario para el diagnóstico de la endometriosis.


Imagen: El estudio IMAGENDO tiene como objetivo reducir el retraso diagnóstico de la endometriosis a través de imágenes (Fotografía cortesía de la Universidad de Adelaida)
Imagen: El estudio IMAGENDO tiene como objetivo reducir el retraso diagnóstico de la endometriosis a través de imágenes (Fotografía cortesía de la Universidad de Adelaida)

“Si bien las preocupaciones legítimas sobre el uso de la IA han dominado los titulares, este es un ejemplo de cómo esta tecnología puede mejorar la vida de millones de personas que sufren de endometriosis y dolor pélvico severo”, dijo el profesor Gustavo Carneiro, profesor de IA y Aprendizaje Automático en la Universidad de Surrey y uno de los investigadores principales de IMAGENDO. “IMAGENDO está introduciendo capacidades innovadoras de IA para proporcionar un diagnóstico de endometriosis rápido y no invasivo mediante la combinación de la resonancia magnética y la tecnología de ultrasonido”.

Enlaces relacionados:
Universidad de Adelaida
Universidad de Surrey


New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Ultra-Flat DR Detector
meX+1717SCC
New
Ultrasound Scanner
TBP-5533
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Últimas RM noticias

Combinación de técnicas de imagen permitiría extirpar el cáncer de próstata sin biopsia

Detección de lesiones cerebrales de esclerosis múltiple asistida por IA reduce los tiempos de informe radiológico

Algoritmo de IA detecta el 30% de los cánceres de mama que no se ven en las resonancias magnéticas