Modelo de IA diagnostica lesiones cerebrales traumáticas a partir de resonancias magnéticas con un 99 % de precisión
Actualizado el 23 Jul 2024
Una conmoción cerebral es un tipo de lesión cerebral traumática que puede provocar alteraciones temporales en la función cerebral. Ocurren debido a incidentes como lesiones deportivas, latigazos cervicales o un simple golpe en la cabeza. Muchas personas con una conmoción cerebral leve pueden no reconocer que una lesión aparentemente menor podría llevar a problemas de salud graves y a largo plazo si no se trata. Por lo general, el diagnóstico de una conmoción cerebral en entornos clínicos se basa en evaluaciones cognitivas básicas como la Escala de Coma de Glasgow, que evalúa el nivel de conciencia, la capacidad de respuesta y la retención de memoria del paciente. A pesar de estas medidas, se estima que entre el 50 % y el 90 % de los casos de conmoción cerebral no se diagnostican formalmente cuando los pacientes visitan la sala de emergencias, lo que aumenta el riesgo de complicaciones críticas como hemorragias cerebrales y deterioro cognitivo. Ahora, los científicos han desarrollado un modelo de aprendizaje automático sofisticado que puede predecir con mayor precisión el estado de conmoción cerebral en los pacientes.
El modelo se construyó en una colaboración de investigación entre la Escuela de Ingeniería Viterbi de la USC (Los Ángeles, CA, EUA) y la Escuela de Gerontología Leonard Davis de la USC (Los Ángeles, CA, EUA) aprovechando datos de escáneres cerebrales por resonancia magnética de individuos sanos y pacientes con conmociones cerebrales. Las imágenes en las que se basa el clasificador se conocen como imágenes ponderadas por difusión, que miden cómo el líquido viaja a través del cerebro en diferentes rutas de conexión.
El clasificador se construyó utilizando el aprendizaje automático bayesiano, un sistema probabilístico que asigna clasificaciones basadas en las características con menos probabilidades de ser incorrectas o mal clasificadas según el conocimiento de las condiciones previas. El equipo de investigación descubrió que su modelo clasificador era excepcionalmente preciso, demostrando una tasa de precisión del 99 % en la identificación de conmociones cerebrales tanto en la fase de entrenamiento como en la de prueba. Este clasificador es prometedor como base para una herramienta de diagnóstico que podría integrarse en la práctica clínica. Estos hallazgos y el desarrollo de esta herramienta se han documentado en una publicación reciente en el Journal of Neurotrauma .
"Se trata de una precisión mucho mayor de la que jamás hayamos visto con un método como este", dijo Benjamin Hacker, quien dirigió el equipo de investigación. “Creo que es porque nadie había ideado previamente nuestra línea exacta de uso de imágenes ponderadas por difusión, convirtiéndolas en una matriz de conectividad y luego aprovechando el aprendizaje automático de una manera personalizada para descubrir qué vías se ven más afectadas por el traumatismo craneoencefálico. Es ciertamente novedoso porque hasta ahora no hemos tenido un clasificador de conmoción cerebral basado en imágenes que haya sido lo suficientemente preciso como para confiar”.
Enlaces relacionados:
Escuela de Ingeniería de Viterbi de la USC
Escuela de Gerontología Leonard Davis de la USC