Los metamateriales podrían aumentar la velocidad y precisión de las resonancias magnéticas
Actualizado el 10 Sep 2024
La resonancia magnética (RM) ha revolucionado la forma en que los médicos diagnostican y planifican el tratamiento de diversas enfermedades, al permitir la visualización no invasiva del interior del cuerpo humano. A pesar de sus beneficios, la tecnología de RM más avanzada suele ser inaccesible debido a su volumen, rigidez y alto costo, lo que limita su disponibilidad, especialmente en áreas remotas y de bajos recursos. Con el objetivo de hacer que la tecnología de resonancia magnética sea más accesible, los ingenieros están innovando en dispositivos que pueden mejorar la velocidad, la asequibilidad y la precisión de los escáneres. Están utilizando metamateriales (estructuras fabricadas a partir de materiales comunes como cobre, tela y plástico diseñados para controlar ondas electromagnéticas y frecuencias de radio) con el fin de mejorar significativamente las capacidades de la RM.
Estas innovaciones están siendo lideradas por la Facultad de Ingeniería de la Universidad de Boston (Boston, MA, EUA), donde los ingenieros han introducido herramientas como resonadores que ajustan los campos magnéticos y dispositivos portátiles que se asemejan a joyas que reducen la interferencia de los escáneres. Su trabajo incluye el desarrollo de "metamateriales inteligentes" para acelerar las exploraciones por RM y un casco ajustable diseñado para refinar las imágenes cerebrales y reducir la duración de las exploraciones. Estos avances se detallan en varias publicaciones científicas recientes. Uno de los artículos más recientes, publicado en Advanced Science, explora metamateriales portátiles que se ajustan a partes del cuerpo como los codos o las rodillas. La investigación incluye dispositivos que envuelven el tobillo como un aparato ortopédico, mejorando la precisión de las imágenes. Estas herramientas utilizan resonadores helicoidales diseñados computacionalmente, construidos a partir de plástico y bobinas delgadas de cobre, que afinan los campos magnéticos de la RM. Esta tecnología no solo aumenta la relación señal-ruido, mejorando la claridad de la imagen al minimizar el ruido electromagnético de fondo, sino que también emplea algoritmos sofisticados que realizan escaneos 3D rápidos para determinar la disposición óptima del resonador utilizando principios de empaquetamiento circular. Estos principios garantizan que las bobinas sean compactas y estén posicionadas de manera efectiva.
Además, estos diseños pueden resonar a frecuencias específicas y se incorporan en cómodos brazaletes portátiles. Otro estudio en la revista Advanced Materials, presenta un enfoque novedoso que utiliza cables coaxiales, ccomúnmente empleados para la conectividad a internet, que son ideales para transportar e aislar señales eléctricas de alta frecuencia. Los investigadores han desarrollado metamateriales portátiles y ligeros, basados en tela, que posicionan estos cables cerca de la parte del cuerpo escaneada, mejorando la proximidad y efectividad de la RM. Avanzando aún más en su investigación, en una publicación en Science Advances, el equipo presentó un metamaterial inalámbrico que se ajusta al cuerpo y mejora pasivamente las señales de RM. Este diseño utiliza cables coaxiales configurados en brazaletes autoportantes, sin necesidad de tela, optimizando la relación señal-ruido para obtener imágenes más claras. Se ha demostrado que estas elegantes estructuras, que se asemejan al arte moderno o a la joyería personalizada, mejoran significativamente la calidad de las exploraciones de RM de la columna vertebral, la muñeca e incluso los dedos individuales, lo que demuestra su potencial para transformar drásticamente la accesibilidad y la eficacia de la RM.
“Nuestros diseños recientes demuestran varias estrategias para usar metamateriales para mejorar la RM usando materiales de bajo costo, lo que esperamos se traduzca en tecnologías que permitan que más pacientes en todo el mundo se beneficien de la RM”, dijo Xin Zhang, profesora distinguida de ingeniería en el Colegio de Ingeniería de la Universidad de Boston, quien lidera el equipo con el objetivo de expandir el acceso a las exploraciones de RM, haciéndolas más rápidas y económicas.
Enlaces relacionados:
Facultad de Ingeniería de la Universidad de Boston