Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Algoritmo de IA detecta el 30% de los cánceres de mama que no se ven en las resonancias magnéticas

Por el equipo editorial de MedImaging en español
Actualizado el 16 Nov 2024

En los Estados Unidos, más de 500.000 mujeres participan cada año en exámenes suplementarios de resonancia magnética (RM) de mama. Se considera que estas mujeres tienen un riesgo elevado de cáncer de mama. Después de una mamografía de detección negativa, la RM complementaria puede descubrir entre 15 y 18 cánceres adicionales por cada 1.000 mujeres de alto riesgo. Gracias a la mayor sensibilidad de la RM en comparación con la mamografía, puede ser posible estimar el riesgo de una persona de desarrollar cáncer en el próximo año basado en su última RM de cribado negativa. Los investigadores han propuesto que los exámenes de RM actuales contienen información valiosa sobre el resultado del próximo cribado anual. Basándose en esta hipótesis, han desarrollado y evaluado un algoritmo de inteligencia artificial (IA) para identificar el cáncer de mama en exploraciones de RM hasta un año antes de cuando los radiólogos normalmente lo detectan, lo que podría mejorar la detección temprana entre mujeres de alto riesgo.

Un equipo de investigación del City College de Nueva York (Nueva York, NY, EUA) afinó un modelo de IA de red neuronal convolucional (CNN), que se entrenó previamente con datos de RM de mama, utilizando un conjunto de datos retrospectivo que incluía 3029 exploraciones de resonancia magnética de 910 pacientes. Este conjunto de datos contenía 115 cánceres diagnosticados en el plazo de un año a partir de un resultado negativo de la resonancia magnética. El modelo tenía como objetivo identificar estos cánceres para predecir el desarrollo del cáncer con hasta un año de antelación. La red se afinó y validó utilizando un método de validación cruzada de 10 veces. La edad media de los pacientes involucrados fue de 52 años, con un rango de entre 18 y 88 años, con una duración media de seguimiento de 4,3 años, que abarcó de 1 a 12 años.


Imagen: Cada uno de los cuatro paneles muestra el seno sano en la resonancia magnética actual (izquierda) y el cáncer en la RM posterior (derecha), con el cáncer destacado en amarillo (foto cortesía de Academic Radiology; doi.org/10.1016/j. ACRA.2024.10.014)
Imagen: Cada uno de los cuatro paneles muestra el seno sano en la resonancia magnética actual (izquierda) y el cáncer en la RM posterior (derecha), con el cáncer destacado en amarillo (foto cortesía de Academic Radiology; doi.org/10.1016/j. ACRA.2024.10.014)

La IA fue capaz de detectar cánceres un año antes, logrando un área bajo la curva ROC de 0,72. Una revisión retrospectiva por parte de un radiólogo de las resonancias magnéticas con el 10% más alto de riesgo, según la clasificación de la IA, podría haber aumentado la detección temprana hasta en un 30%. El radiólogo identificó un marcador visual para los cánceres confirmados por biopsia en 83 escaneos de RM del año anterior. El algoritmo de IA señaló las regiones anatómicas donde se detectaría el cáncer en 66 casos, con concordancia entre los dos métodos en 54 casos. Con base en los hallazgos publicados en la revista Academic Radiology, los investigadores concluyeron que su innovadora reevaluación asistida por IA de las exploraciones mamarias "benignas" tiene promesa para mejorar la detección temprana del cáncer de mama mediante RM. A medida que los conjuntos de datos se expandan y la calidad de la imagen continúe mejorando, anticipan que este método será cada vez más influyente.


New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
Opaque X-Ray Mobile Lead Barrier
2594M
New
Ultrasound Imaging System
P12 Elite
DRF DR & Remote Fluoroscopy Solution
CombiDiagnost R90

Últimas RM noticias

Exploración cerebral de 10 minutos predice la eficacia de la cirugía de médula espinal

Nuevos compuestos beneficiarán a los pacientes con enfermedad renal que no pueden someterse a resonancia magnética

Nueva técnica de resonancia magnética cardíaca mejora el diagnóstico de la enfermedad coronaria