Sistema de ultrasonido basado en láser sin contacto ofrece el mismo rendimiento que resonancia magnética y tomografía computarizada a menor costo
Actualizado el 05 Sep 2023
Los profesionales médicos emplean diariamente el ultrasonido para ayudar en la evaluación y el diagnóstico de una amplia variedad de afecciones, enfermedades y lesiones. A través de la ecografía, los médicos pueden obtener información no invasiva sobre las estructuras internas del cuerpo, obteniendo imágenes de varios tejidos y sus formas. El ultrasonido también es capaz de medir el flujo sanguíneo pulsante dentro de arterias y venas, así como evaluar los atributos mecánicos (elastografía) de órganos y tejidos. Si bien los sistemas de ultrasonido médicos modernos destacan por capturar detalles de los tejidos con precisión submilimétrica, no están exentos de limitaciones. Desafíos como la distorsión de la imagen causada por los ecografistas que aplican presión a la sonda al tacto y la incertidumbre de la referencia posicional o la variabilidad del operador, obstaculizan la capacidad de la tecnología para rastrear afecciones como los tumores cancerosos. En consecuencia, a menudo se emplean técnicas más costosas como la resonancia magnética (RM) y la tomografía computarizada (TC) para monitorear la progresión de las enfermedades, a pesar de su mayor complejidad, mayor tamaño, costo més alto y posibles riesgos de radiación. Ahora, un sistema de ultrasonido láser sin contacto ha surgido como una alternativa rentable, que ofrece capacidades similares a la resonancia magnética y la tomografía computarizada en una plataforma portátil y automatizada.
Investigadores del Instituto Tecnológico de Massachusetts (MIT, Cambridge, MA, EUA) y sus colaboradores del Hospital General de Massachusetts (Boston, MA, EUA) han desarrollado un nuevo dispositivo de imágenes médicas llamado Ultrasonido Láser Sin Contacto (NCLUS por sus siglas en inglés). Este sistema de ultrasonido basado en láser genera imágenes de las características internas del cuerpo, como órganos, grasa, músculos, tendones y vasos sanguíneos. El NCLUS utiliza un láser pulsado que transmite energía óptica a través del aire hasta la superficie de la piel. La piel absorbe la luz rápidamente al contacto, induciendo un calentamiento localizado y una rápida deformación de la piel mediante un proceso termoelástico. Esta deformación genera rápidamente ondas ultrasónicas, que sirven como fuente de ultrasonidos mediante un fenómeno conocido como fotoacústica. El pulso óptico produce una amplia potencia de ultrasonido con frecuencias comparables a las del ultrasonido médico tradicional, sin producir ninguna sensación perceptible en la piel. Los ecos de ultrasonido que se originan en tejidos más profundos emergen como vibraciones localizadas en la superficie de la piel, que son capturadas por un vibrómetro láser Doppler especializado y altamente sensible.
El proceso de adquisición de imágenes de ultrasonido totalmente automatizado del NCLUS ofrece el potencial de reducir la necesidad de un ecografista y eliminar la variabilidad del operador. El posicionamiento preciso del láser garantiza la reproducibilidad, eliminando la variabilidad entre mediciones repetidas. Es importante destacar que, dado que el NCLUS funciona sin contacto directo, no hay compactación del tejido ni distorsión relacionada de las características de la imagen. De manera similar a la resonancia magnética y la tomografía computarizada, el NCLUS emplea marcadores de piel para establecer una capacidad de marco de referencia fijo, lo que permite la reproducción y comparación de exploraciones repetidas a lo largo del tiempo. Para facilitar estas capacidades de seguimiento, el equipo de investigación ha desarrollado un software que procesa imágenes de ultrasonido y detecta cualquier diferencia entre ellas. Dado que el NCLUS no requiere presión manual ni geles de acoplamiento (a diferencia de las sondas de contacto), puede ser particularmente adecuado para pacientes con áreas del cuerpo sensibles o dolorosas, condiciones frágiles o riesgos de infección. Además, el sistema mide la resistencia ósea y es prometedor para monitorear las etapas de progresión de las enfermedades.
El equipo de investigación validó el desempeño del sistema utilizando un disco a base de gel que imita las propiedades mecánicas del tejido humano, conocido como fantasma, que regula la propagación de ondas de ultrasonido. El equipo ahora está desarrollando el NCLUS para aplicaciones militares, incluida la detección y caracterización de hemorragias internas potencialmente mortales, el seguimiento de lesiones musculoesqueléticas y la recuperación, y ofrece imágenes elastográficas de regiones de extremidades amputadas para acelerar el diseño y la adaptación de encajes protésicos. Las aplicaciones civiles del NCLUS incluyen imágenes en la unidad de cuidados intensivos. La siguiente fase de la iniciativa NCLUS consiste en realizar estudios clínicos utilizando un láser que garantice la seguridad de la piel, con el objetivo de comparar las imágenes de ultrasonido con la ecografía médica convencional. Si tiene éxito, el equipo buscará financiación comercial para el desarrollo de dispositivos médicos clínicos, seguido de la aprobación de la Administración de Alimentos y Medicamentos de EUA.
"La variabilidad ha sido una limitación importante de la ecografía médica durante décadas", afirmó Anthony Samir, presidente asociado de Ciencias de la Imagen en Radiología del Hospital General de Massachusetts. "Con un mayor desarrollo, el NCLUS tiene el potencial de ser una tecnología transformadora: una plataforma de ecografía portátil y automatizada con una capacidad de marco de referencia fijo similar a la de la resonancia magnética y la tomografía computarizada.
Enlaces relacionados:
MIT
Hospital General de Massachusetts