MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Sistema de diagnóstico analiza automáticamente imágenes ETT para identificar enfermedades cardíacas congénitas

Por el equipo editorial de MedImaging en español
Actualizado el 06 Jun 2024

La cardiopatía congénita (CC) es una de las anomalías congénitas más prevalentes en todo el mundo y presenta importantes desafíos financieros y de salud para los pacientes afectados. La detección y el tratamiento tempranos de la enfermedad coronaria pueden mejorar en gran medida el pronóstico y la calidad de vida de los niños. Sin embargo, los ecografistas inexpertos a menudo tienen dificultades para identificar con precisión la enfermedad coronaria mediante imágenes de ecocardiograma transtorácico (ETT). Por lo tanto, existe una necesidad apremiante de un sistema auxiliar de detección de enfermedades del corazón que permita a los ecografistas y médicos generales sin experiencia realizar evaluaciones de ETT de una manera simple y fácil de usar, mejorando así la tasa y el alcance de la detección de enfermedades del corazón.

Un nuevo sistema de detección de enfermedades coronarias desarrollado conjuntamente por investigadores de la Universidad Médica de Anhui (Anhui, China) para identificar las imágenes cardíacas ETT integra información de varias vistas y modalidades, visualiza la región de alto riesgo y predice la probabilidad de que el sujeto sea normal o tenga comunicación interauricular (CIA) o comunicación interventricular (CIV). Esto se logró mediante el desarrollo de una estructura de red jerárquica. Inicialmente, el modelo reconoce las dos modalidades utilizadas en ETT (2D y Doppler) e identifica las vistas cardíacas, que incluyen la vista apical de cuatro cámaras (A4C), la vista subxifoidea de eje largo (SXLAX) de las dos aurículas, la vista paraesternal de eje largo (PSLAX) del ventrículo izquierdo, la vista paraesternal de eje corto (PSSAX) de la aorta y la vista supraesternal de eje largo (SSLAX). Luego procesa las características para cada vista y cada modalidad utilizando la red troncal ResNet50.


Imagen: Figuras de CAM de imágenes de prueba (foto cortesía de SPJ; doi: 10.34133/investigación.0319)
Imagen: Figuras de CAM de imágenes de prueba (foto cortesía de SPJ; doi: 10.34133/investigación.0319)

Siguiendo el módulo de incorporación de características básicas, el modelo fusionó los datos de las cinco vistas y posteriormente fusionó la información derivada de los dos TTE modales. Luego, el clasificador generó las predicciones finales para cada sujeto y se creó una visualización de las regiones de alto riesgo para cada niño utilizando la estrategia Grad-CAM. Después de completar el examen ETT, el sistema auxiliar de diagnóstico de cardiopatía coronaria analizó automáticamente las imágenes ETT y evaluó la probabilidad de que el sujeto fuera normal o tuviera CIA o CIV. El equipo de investigación demostró que el modelo identificó eficazmente a niños con enfermedad coronaria mediante la integración de múltiples vistas y modalidades de ETT. Los hallazgos indican que este modelo podría ayudar significativamente a ampliar la detección de enfermedades coronarias y distinguir con precisión entre diferentes subtipos de enfermedades coronarias en niños.

Enlaces relacionados:
Universidad Médica de Anhui


Ultrasonic Pocket Doppler
SD1
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Digital Intelligent Ferromagnetic Detector
Digital Ferromagnetic Detector
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices

Últimas Ultrasonido noticias

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil
05 Jun 2024  |   Ultrasonido

Avance en modelo de aprendizaje profundo mejora las imágenes médicas 3D con dispositivos portátiles
05 Jun 2024  |   Ultrasonido

Sistema de imágenes mamarias indoloro puede realizar una exploración del cáncer en un minuto
05 Jun 2024  |   Ultrasonido