Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

La IA predice como los pacientes con CPCNM responderán a la quimioterapia

Por el equipo editorial de MedImaging en español
Actualizado el 01 Apr 2019
Los investigadores pronto podrán predecir qué pacientes de cáncer de pulmón responderán a la quimioterapia utilizando los datos de la tomografía computarizada (TC). Generalmente, se adopta la quimioterapia basada en platino como el tratamiento de primera línea para el cáncer de pulmón de células no microcítico en estadio avanzado (CPCNM), aunque solo uno de cada cuatro pacientes responde bien a este tratamiento.

Actualmente no hay manera de predecir qué pacientes pueden obtener el mayor beneficio de la quimioterapia. Los exámenes por TAC se utilizan habitualmente para la estadificación del tumor y el seguimiento de la respuesta al tratamiento. Los investigadores usan un campo de estudio llamado radiómica para extraer datos cuantitativos o medibles de las imágenes de la TC que pueden revelar características de la enfermedad que no son visibles en las imágenes únicamente. En el último estudio, los investigadores se centraron en identificar el papel de las características de la textura radiómica, tanto dentro como alrededor del tumor pulmonar, con el fin de predecir el tiempo de progresión y la supervivencia general, así como la respuesta a la quimioterapia en pacientes con CPCNM.

Los investigadores analizaron los datos de 125 pacientes que habían sido tratados con quimioterapia doble de platino basada en pemetrexed. Dividieron al azar a los pacientes en dos conjuntos con un número igual de respondedores y no respondedores en el conjunto de entrenamiento. El conjunto de entrenamiento comprendía 53 pacientes con CPCNM, y el conjunto de validación comprendía 72 pacientes.

Una computadora analizó las imágenes de TC del cáncer de pulmón para identificar patrones únicos de heterogeneidad tanto dentro como fuera del tumor. Luego se compararon estos patrones entre las tomografías computarizadas de pacientes que respondieron y no respondieron a la quimioterapia. Estos patrones de características se utilizaron para entrenar a un clasificador de aprendizaje automático para identificar la probabilidad de que un paciente con cáncer de pulmón respondiera a la quimioterapia. Los resultados mostraron que las características radiómicas derivadas del tumor y el área alrededor del tumor fueron capaces de diferenciar a los pacientes que respondieron a la quimioterapia de los que no lo hicieron. Además, las características radiómicas predijeron el tiempo hasta la progresión y la supervivencia general.

De acuerdo con Mohammadhadi Khorrami, M.S, un candidato a Ph.D., del Departamento de Ingeniería Biomédica de la Escuela de Ingeniería de la Universidad Case Western Reserve en Cleveland, Ohio, quien, junto con Mónica Khunger, M.D, del Departamento de Medicina Interna de la Clínica Cleveland, dirigió el estudio, los datos radiómicos derivados de las imágenes de TC también pueden ayudar a identificar a aquellos pacientes que presentan un riesgo elevado de recurrencia y que podrían beneficiarse de una observación y seguimiento más intensivos.

“Cuando observamos los patrones dentro del tumor, obtuvimos una exactitud de 0,68. Pero cuando miramos dentro y fuera, la exactitud subió a 0,77”, dijo Khorrami. “A pesar de la gran cantidad de estudios en el espacio de la radiómica por TC, el área circundante inmediata del tumor, o la región peritumoral, ha permanecido relativamente sin explorar. Nuestros resultados mostraron una clara evidencia del papel de los patrones de textura peritumoral en la predicción de la respuesta y el tiempo de progresión después de la quimioterapia”.

“Este es el primer estudio que demuestra que los patrones de heterogeneidad o diversidad extraídos por computadora desde fuera del tumor fueron predictivos de la respuesta a la quimioterapia”, dijo la Dra. Khunger. “Esto es muy importante porque podría permitir predecir antes de la terapia qué pacientes con cáncer de pulmón tienen probabilidad de responder o no. Esto, a su vez, podría ayudar a identificar a los pacientes que probablemente no respondan a la quimioterapia y reciban terapias alternativas como la radiación o la inmunoterapia”.

Enlace relacionado:
Departamento de Ingeniería Biomédica de la Escuela de Ingeniería de la Universidad Case Western Reserve
Clínica Cleveland


Digital X-Ray Detector Panel
Acuity G4
New
MRI System
nanoScan MRI 3T/7T
Pocket Fetal Doppler
CONTEC10C/CL
Post-Processing Imaging System
DynaCAD Prostate

Canales

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: la solución Angio-CT integra los últimos avances en imágenes de intervención (foto cortesía de Canon Medical)

Avanzada solución de angio-TC ofrece nuevas posibilidades terapéuticas

Mantener la precisión y la seguridad en radiología intervencionista es un desafío constante, especialmente a medida que los procedimientos complejos requieren tanto alta precisión... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más