La IA predice como los pacientes con CPCNM responderán a la quimioterapia
|
Por el equipo editorial de MedImaging en español Actualizado el 01 Apr 2019 |
Los investigadores pronto podrán predecir qué pacientes de cáncer de pulmón responderán a la quimioterapia utilizando los datos de la tomografía computarizada (TC). Generalmente, se adopta la quimioterapia basada en platino como el tratamiento de primera línea para el cáncer de pulmón de células no microcítico en estadio avanzado (CPCNM), aunque solo uno de cada cuatro pacientes responde bien a este tratamiento.
Actualmente no hay manera de predecir qué pacientes pueden obtener el mayor beneficio de la quimioterapia. Los exámenes por TAC se utilizan habitualmente para la estadificación del tumor y el seguimiento de la respuesta al tratamiento. Los investigadores usan un campo de estudio llamado radiómica para extraer datos cuantitativos o medibles de las imágenes de la TC que pueden revelar características de la enfermedad que no son visibles en las imágenes únicamente. En el último estudio, los investigadores se centraron en identificar el papel de las características de la textura radiómica, tanto dentro como alrededor del tumor pulmonar, con el fin de predecir el tiempo de progresión y la supervivencia general, así como la respuesta a la quimioterapia en pacientes con CPCNM.
Los investigadores analizaron los datos de 125 pacientes que habían sido tratados con quimioterapia doble de platino basada en pemetrexed. Dividieron al azar a los pacientes en dos conjuntos con un número igual de respondedores y no respondedores en el conjunto de entrenamiento. El conjunto de entrenamiento comprendía 53 pacientes con CPCNM, y el conjunto de validación comprendía 72 pacientes.
Una computadora analizó las imágenes de TC del cáncer de pulmón para identificar patrones únicos de heterogeneidad tanto dentro como fuera del tumor. Luego se compararon estos patrones entre las tomografías computarizadas de pacientes que respondieron y no respondieron a la quimioterapia. Estos patrones de características se utilizaron para entrenar a un clasificador de aprendizaje automático para identificar la probabilidad de que un paciente con cáncer de pulmón respondiera a la quimioterapia. Los resultados mostraron que las características radiómicas derivadas del tumor y el área alrededor del tumor fueron capaces de diferenciar a los pacientes que respondieron a la quimioterapia de los que no lo hicieron. Además, las características radiómicas predijeron el tiempo hasta la progresión y la supervivencia general.
De acuerdo con Mohammadhadi Khorrami, M.S, un candidato a Ph.D., del Departamento de Ingeniería Biomédica de la Escuela de Ingeniería de la Universidad Case Western Reserve en Cleveland, Ohio, quien, junto con Mónica Khunger, M.D, del Departamento de Medicina Interna de la Clínica Cleveland, dirigió el estudio, los datos radiómicos derivados de las imágenes de TC también pueden ayudar a identificar a aquellos pacientes que presentan un riesgo elevado de recurrencia y que podrían beneficiarse de una observación y seguimiento más intensivos.
“Cuando observamos los patrones dentro del tumor, obtuvimos una exactitud de 0,68. Pero cuando miramos dentro y fuera, la exactitud subió a 0,77”, dijo Khorrami. “A pesar de la gran cantidad de estudios en el espacio de la radiómica por TC, el área circundante inmediata del tumor, o la región peritumoral, ha permanecido relativamente sin explorar. Nuestros resultados mostraron una clara evidencia del papel de los patrones de textura peritumoral en la predicción de la respuesta y el tiempo de progresión después de la quimioterapia”.
“Este es el primer estudio que demuestra que los patrones de heterogeneidad o diversidad extraídos por computadora desde fuera del tumor fueron predictivos de la respuesta a la quimioterapia”, dijo la Dra. Khunger. “Esto es muy importante porque podría permitir predecir antes de la terapia qué pacientes con cáncer de pulmón tienen probabilidad de responder o no. Esto, a su vez, podría ayudar a identificar a los pacientes que probablemente no respondan a la quimioterapia y reciban terapias alternativas como la radiación o la inmunoterapia”.
Enlace relacionado:
Departamento de Ingeniería Biomédica de la Escuela de Ingeniería de la Universidad Case Western Reserve
Clínica Cleveland
Actualmente no hay manera de predecir qué pacientes pueden obtener el mayor beneficio de la quimioterapia. Los exámenes por TAC se utilizan habitualmente para la estadificación del tumor y el seguimiento de la respuesta al tratamiento. Los investigadores usan un campo de estudio llamado radiómica para extraer datos cuantitativos o medibles de las imágenes de la TC que pueden revelar características de la enfermedad que no son visibles en las imágenes únicamente. En el último estudio, los investigadores se centraron en identificar el papel de las características de la textura radiómica, tanto dentro como alrededor del tumor pulmonar, con el fin de predecir el tiempo de progresión y la supervivencia general, así como la respuesta a la quimioterapia en pacientes con CPCNM.
Los investigadores analizaron los datos de 125 pacientes que habían sido tratados con quimioterapia doble de platino basada en pemetrexed. Dividieron al azar a los pacientes en dos conjuntos con un número igual de respondedores y no respondedores en el conjunto de entrenamiento. El conjunto de entrenamiento comprendía 53 pacientes con CPCNM, y el conjunto de validación comprendía 72 pacientes.
Una computadora analizó las imágenes de TC del cáncer de pulmón para identificar patrones únicos de heterogeneidad tanto dentro como fuera del tumor. Luego se compararon estos patrones entre las tomografías computarizadas de pacientes que respondieron y no respondieron a la quimioterapia. Estos patrones de características se utilizaron para entrenar a un clasificador de aprendizaje automático para identificar la probabilidad de que un paciente con cáncer de pulmón respondiera a la quimioterapia. Los resultados mostraron que las características radiómicas derivadas del tumor y el área alrededor del tumor fueron capaces de diferenciar a los pacientes que respondieron a la quimioterapia de los que no lo hicieron. Además, las características radiómicas predijeron el tiempo hasta la progresión y la supervivencia general.
De acuerdo con Mohammadhadi Khorrami, M.S, un candidato a Ph.D., del Departamento de Ingeniería Biomédica de la Escuela de Ingeniería de la Universidad Case Western Reserve en Cleveland, Ohio, quien, junto con Mónica Khunger, M.D, del Departamento de Medicina Interna de la Clínica Cleveland, dirigió el estudio, los datos radiómicos derivados de las imágenes de TC también pueden ayudar a identificar a aquellos pacientes que presentan un riesgo elevado de recurrencia y que podrían beneficiarse de una observación y seguimiento más intensivos.
“Cuando observamos los patrones dentro del tumor, obtuvimos una exactitud de 0,68. Pero cuando miramos dentro y fuera, la exactitud subió a 0,77”, dijo Khorrami. “A pesar de la gran cantidad de estudios en el espacio de la radiómica por TC, el área circundante inmediata del tumor, o la región peritumoral, ha permanecido relativamente sin explorar. Nuestros resultados mostraron una clara evidencia del papel de los patrones de textura peritumoral en la predicción de la respuesta y el tiempo de progresión después de la quimioterapia”.
“Este es el primer estudio que demuestra que los patrones de heterogeneidad o diversidad extraídos por computadora desde fuera del tumor fueron predictivos de la respuesta a la quimioterapia”, dijo la Dra. Khunger. “Esto es muy importante porque podría permitir predecir antes de la terapia qué pacientes con cáncer de pulmón tienen probabilidad de responder o no. Esto, a su vez, podría ayudar a identificar a los pacientes que probablemente no respondan a la quimioterapia y reciban terapias alternativas como la radiación o la inmunoterapia”.
Enlace relacionado:
Departamento de Ingeniería Biomédica de la Escuela de Ingeniería de la Universidad Case Western Reserve
Clínica Cleveland
Últimas Industria noticias
- Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
- Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
- Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual
- Mindray se asocia con TeleRay para optimizar la entrega de ecografías
- Philips y Medtronic se asocian para el cuidado de accidentes cerebrovasculares
- Siemens y Medtronic forman alianza global para avanzar en tecnologías de imagenología para el cuidado de la columna vertebral
- Exhibiciones técnicas de la RSNA 2024 mostrarán los últimos avances en radiología
- Una colaboración innovadora mejorará la detección del accidente cerebrovascular isquémico
- Microsoft colabora con sistemas médicos académicos líderes para avanzar en la IA en imágenes médicas
- GE HealthCare adquiere el negocio de inteligencia artificial clínica de Intelligent Ultrasound Group
- Bayer y Rad AI colaboran para expandir el uso de soluciones operativas de radiología de vanguardia basadas en IA
- La empresa polaca de tecnología médica BrainScan planea expandirse extensamente en mercados extranjeros
- Bayer y Google se asocian en un nuevo producto de inteligencia artificial para radiólogos
- Samsung y Bracco firman nuevo acuerdo de tecnología de ultrasonido de diagnóstico
- IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
- Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
Canales
Radiografía
ver canal
La IA detecta signos tempranos de envejecimiento a partir de radiografías de tórax
La edad cronológica no siempre refleja la velocidad real del envejecimiento corporal, y las pruebas actuales de edad biológica suelen basarse en marcadores genéticos que pueden pasar... Más
Avance en rayos X captura tres tipos de contraste de imagen en una sola toma
La detección de cáncer en etapas tempranas o cambios sutiles en las capas profundas de los tejidos ha sido un desafío para los sistemas de rayos X convencionales, que dependen únicamente... Más
La IA genera radiografías futuras de rodilla para predecir el riesgo de progresión de la osteoartritis
La osteoartritis, una enfermedad articular degenerativa que afecta a más de 500 millones de personas en todo el mundo, es la principal causa de discapacidad en adultos mayores. Las herramientas... Más
Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres
Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... MásRM
ver canal
Nuevo enfoque de imagen para mejorar el tratamiento de lesiones de la médula espinal
La disfunción vascular en la médula espinal contribuye a múltiples afecciones neurológicas, como lesiones traumáticas y mielopatía cervical degenerativa, donde... Más
Modelo asistido por IA mejora las imágenes de resonancia magnética cardíaca
Una resonancia magnética cardíaca puede revelar información crucial sobre la función cardíaca y cualquier anomalía, pero las exploraciones tradicionales tardan... MásUltrasonido
ver canal
Sistema de ultrasonido portátil permitirá la monitorización de enfermedades en tiempo real
Las enfermedades crónicas como la hipertensión y la insuficiencia cardíaca requieren una monitorización estrecha; sin embargo, en la actualidad la obtención de imágenes... Más
Técnica de ultrasonido visualiza vasos sanguíneos profundos en 3D sin agentes de contraste
La producción de imágenes 3D nítidas de vasos sanguíneos profundos ha sido difícil durante mucho tiempo sin recurrir a medios de contraste, tomografías computarizadas... MásMedicina Nuclear
ver canal
Las imágenes PET de la inflamación predicen la recuperación y guían la terapia tras un infarto cardíaco
El infarto agudo de miocardio puede provocar daño cardíaco permanente; sin embargo, los médicos aún carecen de herramientas fiables para identificar qué pacientes re... Más
Un enfoque radioteranóstico detecta, elimina y reprograma cánceres agresivos
Los cánceres agresivos como el osteosarcoma y el glioblastoma suelen resistir las terapias estándar, prosperar en entornos tumorales hostiles y reaparecer a pesar de la cirugía, la... MásImaginología General
ver canal
Una herramienta basada en IA acelera la detección del cáncer de riñón
El diagnóstico del cáncer de riñón se basa en tomografías computarizadas, que a menudo utilizan agentes de contraste para revelar anomalías en la estructura renal. Los tumores no siempre se buscan de forma... Más
Nuevo algoritmo acelera drásticamente los análisis para la detección del ictus
Cuando los pacientes llegan a urgencias con síntomas de ictus, los médicos deben determinar rápidamente si la causa es un coágulo sanguíneo o una hemorragia cerebral,... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más







