Estudio revela el valor de usar tanto el conocimiento humano como la IA para detectar cáncer de mama
Actualizado el 06 May 2022
Según un nuevo estudio, los radiólogos y los sistemas de inteligencia artificial (IA) arrojan diferencias significativas en la evaluación de las pruebas de detección de cáncer de mama, lo que revela el valor potencial de utilizar tanto métodos humanos como de IA para realizar diagnósticos médicos.
El análisis, realizado por un equipo de investigadores de la Universidad de Nueva York (Nueva York, NY, EUA) se centró en una herramienta específica de IA: las redes neuronales profundas (DNN), que son capas de elementos informáticos, "neuronas", simuladas en una computadora. Una red de tales neuronas se puede entrenar para "aprender" construyendo muchas capas y configurando cómo se realizan los cálculos en función de la entrada de datos, un proceso llamado "aprendizaje profundo". Los científicos compararon las pruebas de detección de cáncer de mama leídas por los radiólogos con las analizadas por las DNN.
Los investigadores encontraron que los DNN y los radiólogos diferían significativamente en la forma en que diagnostican una categoría de cáncer de mama maligno llamada lesiones de tejidos blandos. Mientras que los radiólogos se basaron principalmente en el brillo y la forma, los DNN utilizaron pequeños detalles dispersos en las imágenes. Estos detalles también se concentraron fuera de las regiones consideradas más importantes por los radiólogos. Al revelar tales diferencias entre la percepción humana y la de las máquinas en el diagnóstico médico, los investigadores se abocaron a cerrar la brecha entre el estudio académico y la práctica clínica.
“Si bien la IA puede ofrecer beneficios en el cuidado de la salud, su toma de decisiones aún no es bien comprendida”, explica Taro Makino, candidato a doctorado en el Centro de Ciencia de Datos de la Universidad de Nueva York y autor principal del artículo. “Nuestros hallazgos dan un paso importante para comprender mejor cómo la IA llega a las evaluaciones médicas y, con ello, ofrecer un camino para mejorar la detección del cáncer”.
“El principal cuello de botella al trasladar los sistemas de IA al flujo de trabajo clínico es comprender su toma de decisiones y hacerlos más sólidos”, agregó Makino. “Vemos nuestra investigación como un avance en la precisión de las capacidades de la IA para realizar evaluaciones relacionadas con la salud al iluminar y luego abordar sus limitaciones actuales”.
“En estas pruebas de detección de cáncer de mama, los sistemas de IA consideran pequeños detalles en las mamografías que los radiólogos ven irrelevantes”, explicó Krzysztof Geras, Ph.D., profesor del Departamento de Radiología de la Facultad de Medicina Grossman de la NYU. “Esta divergencia en las lecturas debe entenderse y corregirse antes de que podamos confiar en los sistemas de IA para ayudar a tomar decisiones médicas críticas para la vida”.
Enlaces relacionados:
Universidad de Nueva York