Dispositivo basado en catéter con nuevo enfoque de imágenes cardiovasculares ofrece visión sin precedentes de placas peligrosas
Actualizado el 10 Apr 2024
La aterosclerosis, una de las principales causas de ataques cardíacos y accidentes cerebrovasculares, supera a todos los tipos de cáncer combinados como la principal causa de muerte en las sociedades occidentales, lo que representa un importante problema de salud pública. Esta afección surge cuando sustancias como las grasas y el colesterol se acumulan en las paredes de las arterias, lo que hace que se engrosen y endurezcan. Si una placa en estos vasos sanguíneos se rompe o se fragmenta, puede provocar un ataque cardíaco o un derrame cerebral. Ahora, los investigadores han inventado un novedoso dispositivo basado en catéter que combina dos técnicas ópticas sofisticadas para obtener imágenes de placas peligrosas en las arterias que suministran sangre al corazón. Al revelar nuevos detalles sobre las placas, este dispositivo podría ser fundamental para mejorar los tratamientos para prevenir ataques cardíacos y accidentes cerebrovasculares.
Gran parte del conocimiento actual sobre la formación y progresión de la aterosclerosis proviene de estudios histopatológicos en muestras coronarias post mortem. Aunque la llegada de la ecografía intravascular y la OCT ha permitido el estudio de la placa en pacientes vivos, se necesitan métodos y herramientas más eficaces para investigar la aterosclerosis. Para satisfacer esta necesidad, un equipo de la Universidad de California, Davis (Davis, CA, EUA) diseñó un nuevo dispositivo flexible que combina imágenes de fluorescencia durante toda la vida (FLIM) y tomografía de coherencia óptica sensible a la polarización (PSOCT). Este dispositivo captura información valiosa sobre la composición, forma y microestructura de las placas ateroscleróticas.
Este proyecto de varios años emprendido por investigadores de UC Davis se centró en desarrollar FLIM multiespectral para imágenes intravasculares que pueden revelar información como la composición de la matriz extracelular, la presencia de inflamación y los niveles de calcificación de las arterias. Anteriormente, los investigadores habían combinado FLIM con ultrasonido intravascular; en su último esfuerzo, lo combinaron con PSOCT. La PSOCT proporciona datos morfológicos detallados y mediciones de birrefringencia y despolarización. La utilización conjunta de FLIM y PSOCT ofrece una información incomparable de la morfología, la microestructura y la composición bioquímica de la placa.
El desarrollo de sistemas de imágenes intravasculares multimodales adecuados para el cateterismo coronario presenta desafíos tecnológicos. Requiere catéteres flexibles extremadamente delgados (menos de 1 mm) capaces de navegar por los vasos con giros y vueltas bruscos. Una alta velocidad de obtención de imágenes de aproximadamente 100 fotogramas/segundo es crucial para minimizar los artefactos del movimiento cardíaco y lograr una obtención de imágenes arteriales adecuada. Para integrar FLIM y PSOCT sin perjudicar el rendimiento de ninguna de las técnicas, los investigadores utilizaron componentes ópticos adecuados. Un colimador rotatorio de nuevo diseño con alta transmisión de luz y una importante pérdida de retorno era vital para un rendimiento eficaz del PSOCT. Su sistema de catéter coincide con las dimensiones y la flexibilidad de los dispositivos de imágenes intravasculares actuales en uso clínico.
Las pruebas iniciales con tejido artificial validaron la funcionalidad básica del nuevo sistema, seguidas por la medición exitosa de una arteria coronaria sana de un cerdo. Pruebas in vivo posteriores en corazones de cerdo demostraron la capacidad del sistema de catéter híbrido, allanando el camino para la validación clínica. Estas pruebas confirmaron la capacidad del sistema para recopilar simultáneamente datos FLIM registrados conjuntamente en cuatro bandas espectrales e información PSOCT sobre intensidad retrodispersada, birrefringencia y despolarización. Los próximos pasos implican el uso del sistema de imágenes intravasculares para examinar placas en arterias coronarias humanas ex vivo. Al comparar las señales ópticas con las características de la placa identificadas por patólogos expertos, los investigadores pretenden comprender mejor qué características puede identificar FLIM-PSOCT y desarrollar modelos predictivos. También planean realizar más pruebas para la validación clínica del sistema en pacientes.
"Una mejor gestión clínica posible gracias a herramientas avanzadas de imágenes intravasculares beneficiará a los pacientes al proporcionar información más precisa para ayudar a los cardiólogos a adaptar el tratamiento o apoyar el desarrollo de nuevas terapias", dijo la líder del equipo de investigación Laura Marcu de la Universidad de California en Davis.
"Con más pruebas y desarrollo, nuestro dispositivo podría usarse para estudios longitudinales en los que se obtienen imágenes intravasculares de los mismos pacientes en diferentes momentos, proporcionando una imagen de la evolución de la placa o la respuesta a las intervenciones terapéuticas", añadió Julien Bec, primer autor del artículo. "Esto será muy valioso para comprender mejor la evolución de la enfermedad, evaluar la eficacia de nuevos medicamentos y tratamientos y guiar los procedimientos de colocación de stents utilizados para restaurar el flujo sanguíneo normal".
Enlaces relacionados:
Universidad de California, Davis