IA mejora interpretación de radiografías de tórax relacionadas con emergencias por profesionales no radiólogos
Actualizado el 16 Feb 2024
Las radiografías de tórax se utilizan con frecuencia para decidir si una enfermedad necesita atención inmediata. Sin embargo, tomar esta determinación no es fácil. Requiere expertos para identificar cosas como fenómenos de proyección, superposiciones y otras representaciones complejas en las imágenes. Esto puede resultar especialmente difícil para los no radiólogos que no analizan usualmente imágenes de diagnóstico. Sin embargo, en situaciones de emergencia, es posible que deban tomar decisiones clínicas basadas en estas imágenes, a menudo sin la presencia de un radiólogo. Investigaciones anteriores han analizado cómo la IA puede ayudar a interpretar las radiografías de tórax, con el objetivo de hacer que los procesos clínicos sean más eficientes y mejorar la atención al paciente. En un nuevo estudio, un equipo de científicos investigó si un sistema de IA, basado en una red neuronal convolucional (CNN) y diseñado para interpretar radiografías de tórax, podría ser beneficioso en las unidades de emergencia (UE). Su estudio demostró que la IA puede mejorar la interpretación de las radiografías de tórax por parte de no radiólogos, lo que puede ser particularmente valioso en entornos con recursos limitados.
En el estudio, investigadores del Hospital de la Universidad de Munich en Alemania evaluaron un algoritmo de IA entrenado en datos de imágenes de tórax tanto disponibles públicamente como anotados por expertos. Examinaron 563 radiografías de tórax, cada una revisada dos veces por tres radiólogos certificados, tres residentes de radiología y tres residentes que no eran de radiología con experiencia en unidades de emergencia. El estudio también implicó evaluar la capacidad de no radiólogos para diagnosticar cuatro afecciones específicas: derrame pleural, neumotórax, consolidaciones similares a la neumonía y nódulos. En su validación interna, el algoritmo de IA mostró un desempeño impresionante, con puntuaciones de área bajo la curva (AUC) que oscilaron entre 0,95 para nódulos y 0,995 para derrame pleural. Los investigadores observaron que la precisión de los no radiólogos mejoró en las cuatro condiciones cuando se utilizó IA.
Además, el estudio encontró que la asistencia de IA mejoró notablemente el acuerdo entre lectores no radiólogos en la identificación del neumotórax, incluido un aumento significativo en la puntuación AUC y mejoras tanto en la sensibilidad como en la precisión. De manera similar, la detección de nódulos experimentó la mayor mejora con la ayuda de la IA, marcada por aumentos en la sensibilidad, la precisión y la puntuación AUC. Cuando los radiólogos utilizaron el algoritmo de IA, observaron mejoras menores en el desempeño, la sensibilidad y la precisión, la mayoría de las cuales no fueron significativas. Estos resultados llevaron a los investigadores a concluir que el apoyo de la IA podría ser particularmente útil para los médicos menos experimentados en situaciones en las que no hay radiólogos o médicos de urgencias disponibles.
"En un entorno de unidad de emergencia sin cobertura de radiología las 24 horas del día, los 7 días de la semana, la solución de IA presentada se convierte en una excelente herramienta de apoyo clínico para no radiólogos, similar a un segundo lector, y permite un diagnóstico primario más preciso y, por lo tanto, un inicio más temprano de la terapia", afirmó el equipo.
Enlaces relacionados:
Hospital de la Universidad de Múnich