Importante avance en imágenes por ultrasonido 3D permite la observación en tiempo real del flujo sanguíneo

Por el equipo editorial de MedImaging en español
Actualizado el 18 May 2022

Los órganos están irrigados por una compleja red de vasos sanguíneos, que son esenciales para su correcto funcionamiento. Algunas técnicas de imagen brindan una visión global de esta red vascular, pero por primera vez, la imagen 3D ultrarrápida nos permite observar el flujo sanguíneo desde las arterias grandes hasta los vasos sanguíneos más pequeños de solo unos pocos micrómetros de diámetro.

Dos estudios sucesivos, realizados por investigadores de Physics for Medicine Paris (ESPI, París, Francia) han destacado los avances en imágenes de ultrasonido 3D no invasivas, lo que permite observar el flujo sanguíneo en tiempo real en dos órganos completos: el corazón y el cerebro. En los últimos 10 años, ESPCI ha realizado importantes avances en imágenes vasculares, con el desarrollo de imágenes Doppler ultrasensibles (uDoppler) y luego la microscopía de localización por ultrasonido (ULM) en 2D. Esta vez, los investigadores de ESPCI han alcanzado un hito importante al implementar ULM en 3D: gracias al aspecto tridimensional, los investigadores obtuvieron imágenes súper resueltas del corazón y el cerebro de un roedor, a escala de todo el órgano. Además de aportar conocimientos fundamentales sobre el funcionamiento de los órganos, esta técnica también podría aportar valiosa información sobre diversas patologías cardiovasculares e incluso medir la eficacia de distintos tratamientos.


Imagen: Un avance importante en 3D permite a los médicos observar órganos enteros (Fotografía cortesía de ESPCI Paris)

Para lograr tal hazaña con resoluciones tan finas, los científicos inyectaron burbujas de gas microscópicas, cuya posición se controló a altas velocidades de imagen. Esto permitió obtener información detallada sobre el flujo sanguíneo y el tamaño del canal, y así reconstruir toda la actividad vascular del órgano. El equipo también tuvo que superar varios desafíos tecnológicos. Por ejemplo, para el corazón era necesario encontrar la ventana de medición ideal para poder corregir los movimientos relacionados con la respiración y los latidos del corazón en la imagen. Para el cerebro, puede ser necesario implementar algoritmos de procesamiento posterior para corregir las distorsiones de señal inducidas por el cráneo. Además, la transición de imágenes 2D a 3D implica un gran aumento en el volumen de datos recopilados: por un minuto de adquisición, el volumen de datos a procesar supera un terabyte de información. Antes de considerar mudarse a la clínica humana, los científicos mejorarán aún más su tecnología, optimizando los sensores, la electrónica y los métodos de procesamiento de datos.

Enlaces relacionados:
ESPI  


Últimas Ultrasonido noticias