Programa informático supera a radiólogos en análisis de RM cerebrales
Por el equipo editorial de MedImaging en español Actualizado el 18 Oct 2016 |

Imagen: Un programa de computadora vence a los radiólogos en el análisis de resonancias magnéticas (Fotografía cortesía de la CWRU).
Un nuevo estudio que enfrentó a dos médicos en contra de un algoritmo informático de análisis de imágenes de resonancia magnética (RM) del cerebro, encontró que el programa era casi dos veces más exacto.
Investigadores de la Universidad Case Western Reserve (CWRU; Cleveland, OH, EUA) y del Centro Médico Southwestern de la Universidad de Texas (Dallas, TX, EUA), realizaron un estudio para determinar la viabilidad de usar las características de textura extraídas por computador, para diferenciar entre la necrosis por radiación y los tumores cerebrales en los exámenes de resonancia magnética post-radioquimioterapia. En total, se utilizaron 58 exámenes de pacientes, con 43 siendo la cohorte de capacitación para el algoritmo y 15 siendo la cohorte de prueba.
Un conjunto de características radiómicas fue extraída para cada lesión en cada secuencia de RM - T1WI, T2WI con gadolinio y FLAIR. Se utilizó la selección de características para identificar las cinco mejores características más discriminatorias para cada secuencia de resonancia magnética en la cohorte de capacitación. Estas características fueron evaluadas, a continuación, en la cohorte de ensayo mediante un clasificador de máquinas de vectores de soporte. La clasificación del desempeño fue comparada contra lecturas de diagnóstico por dos neuroradiólogos expertos, que tenían acceso a las mismas secuencias de RM que el clasificador. Finalmente, los hallazgos histológicos clínicos fueron confirmados por un neuropatólogo experimentado.
Los resultados revelaron que, en la comparación directa, un neuroradiólogo diagnosticó siete pacientes correctamente, y el segundo médico diagnosticó correctamente ocho pacientes. El programa de ordenador, por otro lado, estuvo correcto en 12 de las 15 imágenes por resonancia magnética. Los investigadores ahora están buscando validar la exactitud de los algoritmos usando una colección mucho más grande de imágenes de varios sitios diferentes, por lo que con el tiempo podría ser utilizado como una herramienta de ayuda para las decisiones, con el fin de ayudar a los neuroradiólogos a mejorar su confianza en la identificación de una lesión sospechosa. El estudio fue publicado el 15 de septiembre de 2016, en la revista American Journal of Neuroradiology.
“Uno de los mayores desafíos con la evaluación del tratamiento de los tumores cerebrales es diferenciar entre los efectos de confusión de la radiación y la recurrencia del cáncer; en una resonancia magnética, se ven muy similares”, dijo el autor principal, el ingeniero biomédico, Pallavi Tiwari, PhD, de la CWRU. “Lo que los algoritmos ven y que los radiólogos no, son las diferencias sutiles en las mediciones cuantitativas de la heterogeneidad del tumor y la descomposición en la microarquitectura en la RM, que son mayores en la recidiva tumoral”.
“Mientras que los médicos utilizan la intensidad de los píxeles en las imágenes por resonancia magnética como una guía, el computador ve en los bordes de cada píxel; si los bordes apuntan en la misma dirección, la arquitectura está conservada”, añadió el autor principal, el profesor de ingeniería biomédica Anant Madabhushi, PhD, director del Centro para Imagenología Computacional y Diagnósticos Personalizados en la CWRU. “Si apuntan en diferentes direcciones, la arquitectura está interrumpida- entropía o desorden y la heterogeneidad es mucho más alta”.
En una reciente competición en el Simposio 2016 Internacional de Imágenes Biomédicas (ISBI), realizado en abril en Praga (República Checa), un algoritmo informático de aprendizaje automático que fue entrenado para reconocer la metástasis del cáncer de mama en los ganglios linfáticos identificó correctamente el 92% por ciento de las veces, casi igualando la tasa de éxito del 96% de un patólogo humano.
Enlaces relacionados:
Enlaces relacionados:
Últimas Imaginología General noticias
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
Técnica de microscopía basada en ultrasonido ayuda a diagnosticar enfermedades de pequeños vasos
La ecografía clínica, comúnmente utilizada en exámenes durante el embarazo, proporciona imágenes en tiempo real de las estructuras corporales. Es una de las técnicas... Más
Células inmunitarias activadas por ultrasonido destruyen células cancerosas
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más