Exámenes cerebrales predicen éxito de terapia del comportamiento cognitivo
|
Por el equipo editorial de MedImaging en español Actualizado el 20 Mar 2018 |

Imagen: Un examen de resonancia magnética funcional, que muestra 10 redes de cerebro a gran escala (Fotografía cortesía de Wikimedia).
Según un nuevo estudio, la resonancia magnética funcional (fMRI) y el aprendizaje automático podrían permitir a los terapeutas adaptar la terapia de comportamiento cognitivo (TCC) para los pacientes individuales.
Investigadores de la Universidad de California en Los Ángeles (UCLA, EUA), realizaron un estudio clínico que inicialmente recolectó las imágenes de resonancia magnética funcional en estado de reposo de los cerebros de 42 personas con trastorno obsesivo compulsivo (TOC), de 18 años a 60 años, antes y después de cuatro semanas de TCC intensiva y diaria. Luego, los investigadores aprovecharon el aprendizaje automático con validación cruzada para evaluar el poder de los patrones de conectividad funcional (CF) en la predicción de la gravedad de los síntomas del TOC después del tratamiento.
Los resultados revelaron que los patrones pretratamiento de CF dentro de la red de modo predeterminado (DMN) y la red visual, predijeron significativamente la gravedad del TOC después del tratamiento, lo que explica hasta el 67% de la varianza. Estas redes también fueron predictores más fuertes que los puntajes clínicos previos al tratamiento. Además, el aprendizaje automático predijo qué pacientes no responderían a la TCC con un 70% de exactitud, y también predijo los puntajes finales de evaluación de síntomas dentro de un pequeño margen de error, independientemente de cómo los pacientes respondieran al tratamiento. El estudio fue publicado el 12 de febrero de 2018 en la revista Proceedings of the National Academy of Sciences (PNAS).
“Este método abre una ventana al cerebro de los pacientes con TOC para ayudarnos a ver cuán receptivos serán al tratamiento. El algoritmo funcionó mucho mejor que nuestras propias predicciones”, dijo el neurocientífico clínico y autor principal, Jamie Feusner, MD. “El tratamiento del TOC podría comenzar algún día con un examen cerebral. El costo de realizar e interpretar una breve resonancia magnética es de varios cientos de dólares, pero ese gasto podría ayudar a las personas que no es probable que reciban ayuda de la TCC intensiva y, de esta manera, evitar el costo de ese tratamiento”.
Las áreas cerebrales están unidas entre sí en una red a gran escala identificada por su función, proporcionando un marco coherente para comprender la cognición. Se han identificado cuatro redes principales; la red de atención dorsal (DAN), que participa en el despliegue voluntario de atención y la reorientación a eventos inesperados; la red en modo predeterminado (DMN), que está activa durante la introspección; la red de saliencia (SN), que monitoriza la relevancia de las entradas externas y los eventos cerebrales internos; y la red de control ejecutivo (ECN), que se ocupa de las tareas cognitivas que requieren atención dirigida externamente, como la memoria de trabajo, la integración relacional, la inhibición de la respuesta y la conmutación del conjunto de tareas.
Investigadores de la Universidad de California en Los Ángeles (UCLA, EUA), realizaron un estudio clínico que inicialmente recolectó las imágenes de resonancia magnética funcional en estado de reposo de los cerebros de 42 personas con trastorno obsesivo compulsivo (TOC), de 18 años a 60 años, antes y después de cuatro semanas de TCC intensiva y diaria. Luego, los investigadores aprovecharon el aprendizaje automático con validación cruzada para evaluar el poder de los patrones de conectividad funcional (CF) en la predicción de la gravedad de los síntomas del TOC después del tratamiento.
Los resultados revelaron que los patrones pretratamiento de CF dentro de la red de modo predeterminado (DMN) y la red visual, predijeron significativamente la gravedad del TOC después del tratamiento, lo que explica hasta el 67% de la varianza. Estas redes también fueron predictores más fuertes que los puntajes clínicos previos al tratamiento. Además, el aprendizaje automático predijo qué pacientes no responderían a la TCC con un 70% de exactitud, y también predijo los puntajes finales de evaluación de síntomas dentro de un pequeño margen de error, independientemente de cómo los pacientes respondieran al tratamiento. El estudio fue publicado el 12 de febrero de 2018 en la revista Proceedings of the National Academy of Sciences (PNAS).
“Este método abre una ventana al cerebro de los pacientes con TOC para ayudarnos a ver cuán receptivos serán al tratamiento. El algoritmo funcionó mucho mejor que nuestras propias predicciones”, dijo el neurocientífico clínico y autor principal, Jamie Feusner, MD. “El tratamiento del TOC podría comenzar algún día con un examen cerebral. El costo de realizar e interpretar una breve resonancia magnética es de varios cientos de dólares, pero ese gasto podría ayudar a las personas que no es probable que reciban ayuda de la TCC intensiva y, de esta manera, evitar el costo de ese tratamiento”.
Las áreas cerebrales están unidas entre sí en una red a gran escala identificada por su función, proporcionando un marco coherente para comprender la cognición. Se han identificado cuatro redes principales; la red de atención dorsal (DAN), que participa en el despliegue voluntario de atención y la reorientación a eventos inesperados; la red en modo predeterminado (DMN), que está activa durante la introspección; la red de saliencia (SN), que monitoriza la relevancia de las entradas externas y los eventos cerebrales internos; y la red de control ejecutivo (ECN), que se ocupa de las tareas cognitivas que requieren atención dirigida externamente, como la memoria de trabajo, la integración relacional, la inhibición de la respuesta y la conmutación del conjunto de tareas.
Últimas Imaginología General noticias
- Enfoque de escaneo 3D permite una cirugía cerebral ultraprecisa
- Herramienta de IA mejora el proceso de imágenes médicas en un 90%
- Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste
- Algoritmo de IA predice con precisión la metástasis del cáncer de páncreas mediante imágenes rutinarias de TC
- Avanzada solución de angio-TC ofrece nuevas posibilidades terapéuticas
- La ampliación de TC detecta coágulos sanguíneos ocultos en pacientes con ictus
- Modelo de IA segmenta con precisión tumores hepáticos a partir de tomografías computarizadas
- Nuevo indicador basado en TC ayuda a predecir hemorragia posparto potencialmente mortal
- La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon
- Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas
- Análisis de TC basado en IA predice daño renal en etapa temprana causado por tratamientos contra el cáncer
- Herramienta basada en aprendizaje profundo mejora el diagnóstico del cáncer de hígado
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
Canales
Radiografía
ver canal
Avance en rayos X captura tres tipos de contraste de imagen en una sola toma
La detección de cáncer en etapas tempranas o cambios sutiles en las capas profundas de los tejidos ha sido un desafío para los sistemas de rayos X convencionales, que dependen únicamente... Más
La IA genera radiografías futuras de rodilla para predecir el riesgo de progresión de la osteoartritis
La osteoartritis, una enfermedad articular degenerativa que afecta a más de 500 millones de personas en todo el mundo, es la principal causa de discapacidad en adultos mayores. Las herramientas... Más
Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres
Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... MásRM
ver canal
Nuevo enfoque de imagen para mejorar el tratamiento de lesiones de la médula espinal
La disfunción vascular en la médula espinal contribuye a múltiples afecciones neurológicas, como lesiones traumáticas y mielopatía cervical degenerativa, donde... Más
Modelo asistido por IA mejora las imágenes de resonancia magnética cardíaca
Una resonancia magnética cardíaca puede revelar información crucial sobre la función cardíaca y cualquier anomalía, pero las exploraciones tradicionales tardan... MásUltrasonido
ver canal
Sonda de ultrasonido obtiene imágenes de todo el órgano en 4D
Los trastornos de la microcirculación sanguínea pueden tener efectos devastadores, contribuyendo a la insuficiencia cardíaca, la insuficiencia renal y enfermedades crónicas.... Más
Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes
Los dispositivos portátiles de ultrasonido se utilizan ampliamente en el diagnóstico, el monitoreo de la rehabilitación y la telemedicina. Sin embargo, la mayoría de los modelos... Más
Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil
La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... MásMedicina Nuclear
ver canal
Las imágenes PET de la inflamación predicen la recuperación y guían la terapia tras un infarto cardíaco
El infarto agudo de miocardio puede provocar daño cardíaco permanente; sin embargo, los médicos aún carecen de herramientas fiables para identificar qué pacientes re... Más
Un enfoque radioteranóstico detecta, elimina y reprograma cánceres agresivos
Los cánceres agresivos como el osteosarcoma y el glioblastoma suelen resistir las terapias estándar, prosperar en entornos tumorales hostiles y reaparecer a pesar de la cirugía, la... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más







