Liberan enorme base de datos de imágenes de TC para pruebas con IA
Por el equipo editorial de MedImaging en español Actualizado el 06 Aug 2018 |
El Centro Clínico de los Institutos Nacionales de la Salud (NIH, Bethesda, MA, EUA) ha puesto a disposición del público un conjunto de datos a gran escala de imágenes de TC para ayudar a la comunidad científica a mejorar la exactitud de detección de las lesiones. El conjunto de datos, llamado DeepLesion, tiene más de 32.000 lesiones anotadas, identificadas en las imágenes de TC, en comparación con menos de mil lesiones en la mayoría de los conjuntos de datos de imágenes médicas disponibles públicamente. Las imágenes son de 4.400 pacientes únicos, que son socios de investigación en los NIH y han sido completamente anónimos. En 2017, el centro clínico de los NIH publicó imágenes anónimas de rayos X de tórax y sus datos correspondientes.
El centro clínico de los NIH es el hospital de investigación clínica para los NIH, la agencia de investigación médica de los EUA, que incluye 27 institutos y centros y es un componente del Departamento de Salud y Servicios Humanos de los EUA Los NIH son la principal agencia federal que realiza y respalda la investigación médica básica, clínica y traslacional e investiga las causas, los tratamientos y las curas de las enfermedades tanto comunes como raras.
Los radiólogos en el centro clínico usan una herramienta de señal electrónica para medir y marcar los hallazgos clínicamente significativos de las imágenes de TC de los pacientes. Los radiólogos guardan el sitio encontrado y marcan los hallazgos significativos, que pueden visitar nuevamente en otro momento. Estos marcadores complejos proporcionan flechas, líneas, diámetros y texto que permiten identificar la ubicación precisa y el tamaño de una lesión para facilitar que los expertos identifiquen el crecimiento o una nueva enfermedad.
Los científicos en el centro clínico de los NIH han utilizado estos marcadores, que son abundantes con datos médicos retrospectivos, para desarrollar el conjunto de datos DeepLesion. A diferencia de la mayoría de los conjuntos de datos de imágenes médicas de lesiones disponibles actualmente que solo pueden detectar un tipo de lesión, DeepLesion ofrece una mayor diversidad ya que contiene todo tipo de hallazgos de radiología crítica de todo el cuerpo, como nódulos pulmonares, tumores hepáticos, ganglios linfáticos agrandados y otros. El conjunto de datos publicado por los NIH es lo suficientemente grande como para formar una red neuronal profunda y podría permitir a la comunidad científica crear un detector de lesiones universales a gran escala con un marco unificado.
Los investigadores esperan que al hacer públicos los conjuntos de datos de imágenes médicas, otros puedan desarrollar un detector de lesiones universal que ayudará a los radiólogos a identificar todo tipo de lesiones. También puede servir como una herramienta de detección inicial y enviar sus resultados de detección a otros sistemas especializados entrenados en ciertos tipos de lesiones. DeepLesion también podría ayudar a los radiólogos a extraer y estudiar la relación entre los diferentes tipos de lesiones con el fin de hacer nuevos descubrimientos. Puede permitirles medir de forma más exacta y automática los tamaños de todas las lesiones en un paciente, lo que permite la evaluación completa del cáncer.
El centro clínico NIH planea continuar mejorando el conjunto de datos DeepLesion al recopilar más datos y aumentar aún más su exactitud de detección. Su capacidad universal de detección de lesiones se volverá más confiable luego de que los investigadores logren aprovechar la información en 3D y del tipo de lesiones. En el futuro, la aplicación DeepLesion podría ampliarse a otras modalidades de imagenología como la resonancia magnética y combinarse con datos de varios hospitales.
El centro clínico de los NIH es el hospital de investigación clínica para los NIH, la agencia de investigación médica de los EUA, que incluye 27 institutos y centros y es un componente del Departamento de Salud y Servicios Humanos de los EUA Los NIH son la principal agencia federal que realiza y respalda la investigación médica básica, clínica y traslacional e investiga las causas, los tratamientos y las curas de las enfermedades tanto comunes como raras.
Los radiólogos en el centro clínico usan una herramienta de señal electrónica para medir y marcar los hallazgos clínicamente significativos de las imágenes de TC de los pacientes. Los radiólogos guardan el sitio encontrado y marcan los hallazgos significativos, que pueden visitar nuevamente en otro momento. Estos marcadores complejos proporcionan flechas, líneas, diámetros y texto que permiten identificar la ubicación precisa y el tamaño de una lesión para facilitar que los expertos identifiquen el crecimiento o una nueva enfermedad.
Los científicos en el centro clínico de los NIH han utilizado estos marcadores, que son abundantes con datos médicos retrospectivos, para desarrollar el conjunto de datos DeepLesion. A diferencia de la mayoría de los conjuntos de datos de imágenes médicas de lesiones disponibles actualmente que solo pueden detectar un tipo de lesión, DeepLesion ofrece una mayor diversidad ya que contiene todo tipo de hallazgos de radiología crítica de todo el cuerpo, como nódulos pulmonares, tumores hepáticos, ganglios linfáticos agrandados y otros. El conjunto de datos publicado por los NIH es lo suficientemente grande como para formar una red neuronal profunda y podría permitir a la comunidad científica crear un detector de lesiones universales a gran escala con un marco unificado.
Los investigadores esperan que al hacer públicos los conjuntos de datos de imágenes médicas, otros puedan desarrollar un detector de lesiones universal que ayudará a los radiólogos a identificar todo tipo de lesiones. También puede servir como una herramienta de detección inicial y enviar sus resultados de detección a otros sistemas especializados entrenados en ciertos tipos de lesiones. DeepLesion también podría ayudar a los radiólogos a extraer y estudiar la relación entre los diferentes tipos de lesiones con el fin de hacer nuevos descubrimientos. Puede permitirles medir de forma más exacta y automática los tamaños de todas las lesiones en un paciente, lo que permite la evaluación completa del cáncer.
El centro clínico NIH planea continuar mejorando el conjunto de datos DeepLesion al recopilar más datos y aumentar aún más su exactitud de detección. Su capacidad universal de detección de lesiones se volverá más confiable luego de que los investigadores logren aprovechar la información en 3D y del tipo de lesiones. En el futuro, la aplicación DeepLesion podría ampliarse a otras modalidades de imagenología como la resonancia magnética y combinarse con datos de varios hospitales.
Últimas Industria noticias
- Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
- Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
- Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual
- Mindray se asocia con TeleRay para optimizar la entrega de ecografías
- Philips y Medtronic se asocian para el cuidado de accidentes cerebrovasculares
- Siemens y Medtronic forman alianza global para avanzar en tecnologías de imagenología para el cuidado de la columna vertebral
- Exhibiciones técnicas de la RSNA 2024 mostrarán los últimos avances en radiología
- Una colaboración innovadora mejorará la detección del accidente cerebrovascular isquémico
- Microsoft colabora con sistemas médicos académicos líderes para avanzar en la IA en imágenes médicas
- GE HealthCare adquiere el negocio de inteligencia artificial clínica de Intelligent Ultrasound Group
- Bayer y Rad AI colaboran para expandir el uso de soluciones operativas de radiología de vanguardia basadas en IA
- La empresa polaca de tecnología médica BrainScan planea expandirse extensamente en mercados extranjeros
- Bayer y Google se asocian en un nuevo producto de inteligencia artificial para radiólogos
- Samsung y Bracco firman nuevo acuerdo de tecnología de ultrasonido de diagnóstico
- IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
- Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis
A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más
La IA identifica la enfermedad de la válvula cardíaca a partir de una prueba de imagen común
La insuficiencia tricúspide es una afección en la que la válvula tricúspide del corazón no se cierra completamente durante la contracción, lo que provoca un flujo sanguíneo retrógrado que puede provocar... Más
Nuevo método de imágenes permite el diagnóstico temprano y seguimiento de la diabetes tipo 2
La diabetes tipo 2 se reconoce como una enfermedad inflamatoria autoinmune, en la que la inflamación crónica provoca alteraciones en la microvasculatura de los islotes pancreáticos, un factor clave en... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásImaginología General
ver canal
Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
Dada la necesidad de detectar el cáncer de pulmón en etapas tempranas, existe una creciente necesidad de una vía de diagnóstico definitiva para pacientes con nódulos pulmonares sospechosos.... Más
Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
El cáncer de pulmón sigue siendo una de las enfermedades más difíciles de abordar, lo que hace que el diagnóstico temprano sea fundamental para un tratamiento eficaz.... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más