Un método basado en la IA reduce los falsos positivos en la mamografía
Por el equipo editorial de MedImaging en español Actualizado el 24 Oct 2018 |
Un equipo de investigadores de la Universidad de Pittsburgh (Pittsburgh, PA, EUA) ha desarrollado un método de inteligencia artificial (IA) basado en una red neuronal convolucional de aprendizaje profundo (CNN, por sus siglas en inglés) que podría identificar características de imágenes mamográficas matizadas específicas en las pacientes a quienes se le solicitó una segunda mamografía, pero que muestran resultados benignos (falsas positivas) y diferenciar dichas mamografías de aquellas identificadas como malignas o negativas.
Los investigadores realizaron un estudio para determinar si se podría aplicar un aprendizaje profundo para analizar un gran conjunto de mamografías con el fin de distinguir imágenes de mujeres con un diagnóstico maligno, imágenes de mujeres a quienes se les hizo una segunda mamografía y que luego se determinó que tenían lesiones benignas y las imágenes de mujeres que se determinó que estaban libres de cáncer de mama en el momento del examen.
Los investigadores utilizaron un total de 14.860 imágenes de 3.715 pacientes de dos conjuntos de datos de mamografía independientes, el conjunto de datos de mamografía digital de campo completo (FFDM - 1.303 pacientes) y el conjunto de datos digitales de mamografía (DDSM - 2.412 pacientes). Construyeron modelos de CNN y utilizaron métodos de entrenamiento de modelos mejorados para investigar seis escenarios de clasificación que ayudarían a diferenciar las imágenes de las mamografías benignas, las malignas y las que requieren un segundo examen. Al combinar los conjuntos de datos de FFDM y DDSM, el área bajo la curva (AUC) para diferenciar las imágenes benignas, las malignas y las benignas en un segundo examen varió de 0,76 a 0,91. Cuanto más alto es el AUC, mejor será el desempeño, con un máximo de 1, según Shandong Wu, PhD, profesor asistente de radiología, informática biomédica, bioingeniería, sistemas inteligentes y ciencias clínicas y de traducción, y director de Computación Inteligente para el Laboratorio de Imagenología Clínica en el Departamento de Radiología de la Universidad de Pittsburgh, Pennsylvania.
"Demostramos que hay características de imágenes únicas para las imágenes benignas en segunda instancia que el aprendizaje profundo puede identificar y potencialmente ayudar a los radiólogos a tomar mejores decisiones sobre si una paciente debe ser examinada nuevamente o es más probable que sea un resultado falso positivo", dijo Wu. "Basados en la capacidad constante de nuestro algoritmo para discriminar todas las categorías de imágenes de mamografía, nuestros hallazgos indican que efectivamente existen algunas características distintivas únicas de las imágenes en que se solicita un segundo examen innecesariamente. Nuestros modelos de IA pueden complementar a los radiólogos en la lectura de estas imágenes y, en última instancia, beneficiar a las pacientes ayudando a reducir las solicitudes innecesarias para un segundo examen".
Enlace relacionado:
Universidad de Pittsburgh
Los investigadores realizaron un estudio para determinar si se podría aplicar un aprendizaje profundo para analizar un gran conjunto de mamografías con el fin de distinguir imágenes de mujeres con un diagnóstico maligno, imágenes de mujeres a quienes se les hizo una segunda mamografía y que luego se determinó que tenían lesiones benignas y las imágenes de mujeres que se determinó que estaban libres de cáncer de mama en el momento del examen.
Los investigadores utilizaron un total de 14.860 imágenes de 3.715 pacientes de dos conjuntos de datos de mamografía independientes, el conjunto de datos de mamografía digital de campo completo (FFDM - 1.303 pacientes) y el conjunto de datos digitales de mamografía (DDSM - 2.412 pacientes). Construyeron modelos de CNN y utilizaron métodos de entrenamiento de modelos mejorados para investigar seis escenarios de clasificación que ayudarían a diferenciar las imágenes de las mamografías benignas, las malignas y las que requieren un segundo examen. Al combinar los conjuntos de datos de FFDM y DDSM, el área bajo la curva (AUC) para diferenciar las imágenes benignas, las malignas y las benignas en un segundo examen varió de 0,76 a 0,91. Cuanto más alto es el AUC, mejor será el desempeño, con un máximo de 1, según Shandong Wu, PhD, profesor asistente de radiología, informática biomédica, bioingeniería, sistemas inteligentes y ciencias clínicas y de traducción, y director de Computación Inteligente para el Laboratorio de Imagenología Clínica en el Departamento de Radiología de la Universidad de Pittsburgh, Pennsylvania.
"Demostramos que hay características de imágenes únicas para las imágenes benignas en segunda instancia que el aprendizaje profundo puede identificar y potencialmente ayudar a los radiólogos a tomar mejores decisiones sobre si una paciente debe ser examinada nuevamente o es más probable que sea un resultado falso positivo", dijo Wu. "Basados en la capacidad constante de nuestro algoritmo para discriminar todas las categorías de imágenes de mamografía, nuestros hallazgos indican que efectivamente existen algunas características distintivas únicas de las imágenes en que se solicita un segundo examen innecesariamente. Nuestros modelos de IA pueden complementar a los radiólogos en la lectura de estas imágenes y, en última instancia, beneficiar a las pacientes ayudando a reducir las solicitudes innecesarias para un segundo examen".
Enlace relacionado:
Universidad de Pittsburgh
Últimas Industria noticias
- Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
- Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
- Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual
- Mindray se asocia con TeleRay para optimizar la entrega de ecografías
- Philips y Medtronic se asocian para el cuidado de accidentes cerebrovasculares
- Siemens y Medtronic forman alianza global para avanzar en tecnologías de imagenología para el cuidado de la columna vertebral
- Exhibiciones técnicas de la RSNA 2024 mostrarán los últimos avances en radiología
- Una colaboración innovadora mejorará la detección del accidente cerebrovascular isquémico
- Microsoft colabora con sistemas médicos académicos líderes para avanzar en la IA en imágenes médicas
- GE HealthCare adquiere el negocio de inteligencia artificial clínica de Intelligent Ultrasound Group
- Bayer y Rad AI colaboran para expandir el uso de soluciones operativas de radiología de vanguardia basadas en IA
- La empresa polaca de tecnología médica BrainScan planea expandirse extensamente en mercados extranjeros
- Bayer y Google se asocian en un nuevo producto de inteligencia artificial para radiólogos
- Samsung y Bracco firman nuevo acuerdo de tecnología de ultrasonido de diagnóstico
- IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
- Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis
A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más
La IA identifica la enfermedad de la válvula cardíaca a partir de una prueba de imagen común
La insuficiencia tricúspide es una afección en la que la válvula tricúspide del corazón no se cierra completamente durante la contracción, lo que provoca un flujo sanguíneo retrógrado que puede provocar... Más
Nuevo método de imágenes permite el diagnóstico temprano y seguimiento de la diabetes tipo 2
La diabetes tipo 2 se reconoce como una enfermedad inflamatoria autoinmune, en la que la inflamación crónica provoca alteraciones en la microvasculatura de los islotes pancreáticos, un factor clave en... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásImaginología General
ver canal
Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
Dada la necesidad de detectar el cáncer de pulmón en etapas tempranas, existe una creciente necesidad de una vía de diagnóstico definitiva para pacientes con nódulos pulmonares sospechosos.... Más
Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
El cáncer de pulmón sigue siendo una de las enfermedades más difíciles de abordar, lo que hace que el diagnóstico temprano sea fundamental para un tratamiento eficaz.... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más