Los profesionales de imagenología consideran importante el aprendizaje automático para la industria
|
Por el equipo editorial de MedImaging en español Actualizado el 29 Jan 2019 |

Imagen: Un estudio nuevo encuentra que la mayoría de los profesionales considera el AA como importante para su industria en el futuro (Fotografía cortesía del Colegio Imperial de Londres).
La mayoría de los radiólogos y líderes de imagenología cree que el aprendizaje automático (AA) jugará un papel importante en la radiología, aunque la mayoría de las organizaciones se encuentran a dos a tres años de la adopción de la tecnología, mientras que una minoría considerable aún no tiene planes para adoptarla.
Esos son los últimos hallazgos de una encuesta reciente realizada por la firma investigadores de mercado Reaction Data, Inc. (American Fork, UT, EUA) para entender la exageración que rodea la inteligencia artificial (IA) y el AA, particularmente en radiología e imagenología. La encuesta también tuvo como objetivo identificar dónde la IA puede ser más útil y aplicable, y las áreas en las cuáles los profesionales de imagenología médica tienen probabilidad de usar el AA.
Los resultados de la encuesta se basaron en la retroalimentación recibida de los profesionales de imagenología, incluyendo directores de radiología, radiólogos, directores de imagenología, gerentes de imagenología, jefes de radiología, técnicos de imagenología y administradores de PACS de 152 organizaciones de salud. Del total de encuestados, aproximadamente el 60% venía de centros médicos académicos u hospitales comunitarios, 15% de redes integradas de atención, 12% de centros de imagenología y el resto de hospitales de acceso crítico, clínicas de especialistas, hospitales de cáncer u hospitales pediátricos.
La encuesta encontró que el porcentaje de encuestados que creía que el AA es importante en la imagenología médica había aumentado a 77% de 65% en 2017, mientras que solo 11% visualizó la tecnología como sin importancia. Por otra parte, solo el 59% de los encuestados dijo que entendía el AA, frente a 52% en 2017, mientras que 20% no entendía la tecnología y 20% tenía cierta compresión.
En términos de adopción, la encuesta encontró que solo el 22% de los encuestados usaban actualmente AA y lo habían adoptado solo recientemente o lo usaban desde hace algún tiempo, mientras que el 11% planeaba adoptar la tecnología el año siguiente. 51% de los encuestados dijo que sus organizaciones estaban a de uno a dos años (28%) o más de tres años (23%) de adoptar el AA, mientras que el 16% dijo que era poco probable que sus organizaciones utilizaran la tecnología.
La encuesta también examinó cómo las organizaciones aplicaban el AA en imagenología y encontró que el 22% de los encuestados usaba la tecnología para la imagenología de la mama y del pulmón, en comparación del 36% y 12%, respectivamente en 2017. Otras aplicaciones del AA en imagenología incluían cardiovascular (13%), rayos-x de tórax (11%), hueso (7%), hígado (7%), neural (5%) y pulmonar (4%).
En su examen de los vendedores que usan los encuestados que han adoptado el AA, la encuesta encontró que ningún vendedor único dominaba este espacio, con 19% usando GE Healthcare y 16% usando Hologic. Otros vendedores utilizados incluían a Philips (14%), Arterys (7%), Nvidia (3%), y Zebra Medical Vision e iCAD (5% cada uno). El porcentaje de líderes de imagenología usando Google como su vendedor de aprendizaje automático cayó a 3% de 13% en 2017, mientras que los usuarios de aprendizaje automático en casa aumentaron a 14% de 9% en 2017.
Enlace relacionado:
Reaction Data, Inc.
Esos son los últimos hallazgos de una encuesta reciente realizada por la firma investigadores de mercado Reaction Data, Inc. (American Fork, UT, EUA) para entender la exageración que rodea la inteligencia artificial (IA) y el AA, particularmente en radiología e imagenología. La encuesta también tuvo como objetivo identificar dónde la IA puede ser más útil y aplicable, y las áreas en las cuáles los profesionales de imagenología médica tienen probabilidad de usar el AA.
Los resultados de la encuesta se basaron en la retroalimentación recibida de los profesionales de imagenología, incluyendo directores de radiología, radiólogos, directores de imagenología, gerentes de imagenología, jefes de radiología, técnicos de imagenología y administradores de PACS de 152 organizaciones de salud. Del total de encuestados, aproximadamente el 60% venía de centros médicos académicos u hospitales comunitarios, 15% de redes integradas de atención, 12% de centros de imagenología y el resto de hospitales de acceso crítico, clínicas de especialistas, hospitales de cáncer u hospitales pediátricos.
La encuesta encontró que el porcentaje de encuestados que creía que el AA es importante en la imagenología médica había aumentado a 77% de 65% en 2017, mientras que solo 11% visualizó la tecnología como sin importancia. Por otra parte, solo el 59% de los encuestados dijo que entendía el AA, frente a 52% en 2017, mientras que 20% no entendía la tecnología y 20% tenía cierta compresión.
En términos de adopción, la encuesta encontró que solo el 22% de los encuestados usaban actualmente AA y lo habían adoptado solo recientemente o lo usaban desde hace algún tiempo, mientras que el 11% planeaba adoptar la tecnología el año siguiente. 51% de los encuestados dijo que sus organizaciones estaban a de uno a dos años (28%) o más de tres años (23%) de adoptar el AA, mientras que el 16% dijo que era poco probable que sus organizaciones utilizaran la tecnología.
La encuesta también examinó cómo las organizaciones aplicaban el AA en imagenología y encontró que el 22% de los encuestados usaba la tecnología para la imagenología de la mama y del pulmón, en comparación del 36% y 12%, respectivamente en 2017. Otras aplicaciones del AA en imagenología incluían cardiovascular (13%), rayos-x de tórax (11%), hueso (7%), hígado (7%), neural (5%) y pulmonar (4%).
En su examen de los vendedores que usan los encuestados que han adoptado el AA, la encuesta encontró que ningún vendedor único dominaba este espacio, con 19% usando GE Healthcare y 16% usando Hologic. Otros vendedores utilizados incluían a Philips (14%), Arterys (7%), Nvidia (3%), y Zebra Medical Vision e iCAD (5% cada uno). El porcentaje de líderes de imagenología usando Google como su vendedor de aprendizaje automático cayó a 3% de 13% en 2017, mientras que los usuarios de aprendizaje automático en casa aumentaron a 14% de 9% en 2017.
Enlace relacionado:
Reaction Data, Inc.
Últimas Industria noticias
- Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
- Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
- Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual
- Mindray se asocia con TeleRay para optimizar la entrega de ecografías
- Philips y Medtronic se asocian para el cuidado de accidentes cerebrovasculares
- Siemens y Medtronic forman alianza global para avanzar en tecnologías de imagenología para el cuidado de la columna vertebral
- Exhibiciones técnicas de la RSNA 2024 mostrarán los últimos avances en radiología
- Una colaboración innovadora mejorará la detección del accidente cerebrovascular isquémico
- Microsoft colabora con sistemas médicos académicos líderes para avanzar en la IA en imágenes médicas
- GE HealthCare adquiere el negocio de inteligencia artificial clínica de Intelligent Ultrasound Group
- Bayer y Rad AI colaboran para expandir el uso de soluciones operativas de radiología de vanguardia basadas en IA
- La empresa polaca de tecnología médica BrainScan planea expandirse extensamente en mercados extranjeros
- Bayer y Google se asocian en un nuevo producto de inteligencia artificial para radiólogos
- Samsung y Bracco firman nuevo acuerdo de tecnología de ultrasonido de diagnóstico
- IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
- Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
Canales
Radiografía
ver canal
Avance en rayos X captura tres tipos de contraste de imagen en una sola toma
La detección de cáncer en etapas tempranas o cambios sutiles en las capas profundas de los tejidos ha sido un desafío para los sistemas de rayos X convencionales, que dependen únicamente... Más
La IA genera radiografías futuras de rodilla para predecir el riesgo de progresión de la osteoartritis
La osteoartritis, una enfermedad articular degenerativa que afecta a más de 500 millones de personas en todo el mundo, es la principal causa de discapacidad en adultos mayores. Las herramientas... Más
Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres
Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... MásRM
ver canal
Nuevo enfoque de imagen para mejorar el tratamiento de lesiones de la médula espinal
La disfunción vascular en la médula espinal contribuye a múltiples afecciones neurológicas, como lesiones traumáticas y mielopatía cervical degenerativa, donde... Más
Modelo asistido por IA mejora las imágenes de resonancia magnética cardíaca
Una resonancia magnética cardíaca puede revelar información crucial sobre la función cardíaca y cualquier anomalía, pero las exploraciones tradicionales tardan... MásUltrasonido
ver canal
Sonda de ultrasonido obtiene imágenes de todo el órgano en 4D
Los trastornos de la microcirculación sanguínea pueden tener efectos devastadores, contribuyendo a la insuficiencia cardíaca, la insuficiencia renal y enfermedades crónicas.... Más
Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes
Los dispositivos portátiles de ultrasonido se utilizan ampliamente en el diagnóstico, el monitoreo de la rehabilitación y la telemedicina. Sin embargo, la mayoría de los modelos... Más
Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil
La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... MásMedicina Nuclear
ver canal
Un enfoque radioteranóstico detecta, elimina y reprograma cánceres agresivos
Los cánceres agresivos como el osteosarcoma y el glioblastoma suelen resistir las terapias estándar, prosperar en entornos tumorales hostiles y reaparecer a pesar de la cirugía, la... Más
Nueva solución de imagen mejora la supervivencia de los pacientes con cáncer de próstata recurrente
La detección del cáncer de próstata recurrente sigue siendo uno de los mayores desafíos en oncología, ya que los métodos de imagen estándar, como las g... Más
Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico
Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más
Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar
Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... MásImaginología General
ver canal
Enfoque de escaneo 3D permite una cirugía cerebral ultraprecisa
La navegación precisa es fundamental en neurocirugía, pero incluso pequeños errores de alineación pueden afectar los resultados cuando se opera en zonas profundas del cerebro.... Más
Herramienta de IA mejora el proceso de imágenes médicas en un 90%
La identificación precisa de distintas regiones dentro de estudios médicos, un proceso conocido como segmentación de imágenes médicas, es fundamental para el diagnóstico,... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más







