Imagenología espectroscópica en el IR ayuda para el diagnóstico del cáncer de colon
Por el equipo editorial de MedImaging en español Actualizado el 09 Sep 2019 |

Imagen: Un estudio nuevo afirma que las imágenes químicas de la FTIR pueden ayudar a identificar el cáncer de colon con mayor exactitud (Fotografía cortesía de ICL).
Según un estudio nuevo, las imágenes espectroscópicas infrarrojas con transformación de Fourier (FTIR) pueden producir ‘fotografías químicas’ de muestras de tejido de biopsia que van desde la sanas a las cancerosas.
Investigadores del Colegio Imperial de Londres (Imperial; Reino Unido) y la Universidad de Columbia Británica (UBC; Vancouver, Canadá) realizaron la obtención de imágenes espectroscópicas FTIR de tejidos de biopsia de colon, y las combinaron con un enfoque aleatorio de aprendizaje automático (ML) de máquinas forestales (NM) para clasificar las diferentes etapas de las neoplasias malignas del cáncer de colon. La combinación de los enfoques computacionales ópticos y del ML ayudó a eliminar la dispersión de fondo durante las mediciones. Los resultados demostraron que el estiramiento CH y que las bandas amida I tienen poca o ninguna importancia para la clasificación de las neoplasias malignas del colon.
El mejor resultado de predicción se encontró cuando la clasificación se realizó en la región de huellas dactilares del espectro infrarrojo medio (7-10 micras; 1500-1000 cm−1), con lo que se excluye la contribución de las bandas de amida I y II. La exactitud general de la predicción fue superior al 90%, con una excelente diferenciación de los tejidos displásicos e hiperplásicos. El estudio también mostró que la corrección computacional funcionó mejor que la corrección óptica, y que los estados de enfermedad se pueden diferenciar efectivamente incluso sin eliminar los efectos de dispersión. El estudio fue publicado el 16 de agosto de 2019, en la revista Analytical and Bioanalytical Chemistry.
“Es urgente desarrollar nuevas técnicas que puedan identificar las primeras etapas del cáncer, de una manera que vaya más allá de los métodos de histopatología actuales, para aumentar las tasas de supervivencia. El acoplamiento de imágenes espectroscópicas con enfoques avanzados de ML ayuda a la detección temprana y a la comprensión del cáncer”, dijo el autor principal, el profesor Sergei Kazarian, PhD, del departamento de ingeniería química del ICL. “Existe la emoción de tener una exactitud mejorada que promete avances en la detección temprana del cáncer y la diferenciación de las etapas de la enfermedad”.
Las imágenes FTIR implican hacer brillar un haz infrarrojo sobre una muestra y medir la cantidad de esa luz que se absorbe a diferentes frecuencias, que se utiliza para producir una referencia visual de la composición química de la muestra. Y aunque el estudio se restringió al cáncer de colon, los investigadores ya han creado modelos, que tienen el potencial de poder ser aplicados a otros cánceres difíciles de diagnosticar, como el cáncer de esófago e incluso anomalías no cancerosas.
Enlace relacionado:
Colegio Imperial de Londres
Universidad de Columbia Británica
Investigadores del Colegio Imperial de Londres (Imperial; Reino Unido) y la Universidad de Columbia Británica (UBC; Vancouver, Canadá) realizaron la obtención de imágenes espectroscópicas FTIR de tejidos de biopsia de colon, y las combinaron con un enfoque aleatorio de aprendizaje automático (ML) de máquinas forestales (NM) para clasificar las diferentes etapas de las neoplasias malignas del cáncer de colon. La combinación de los enfoques computacionales ópticos y del ML ayudó a eliminar la dispersión de fondo durante las mediciones. Los resultados demostraron que el estiramiento CH y que las bandas amida I tienen poca o ninguna importancia para la clasificación de las neoplasias malignas del colon.
El mejor resultado de predicción se encontró cuando la clasificación se realizó en la región de huellas dactilares del espectro infrarrojo medio (7-10 micras; 1500-1000 cm−1), con lo que se excluye la contribución de las bandas de amida I y II. La exactitud general de la predicción fue superior al 90%, con una excelente diferenciación de los tejidos displásicos e hiperplásicos. El estudio también mostró que la corrección computacional funcionó mejor que la corrección óptica, y que los estados de enfermedad se pueden diferenciar efectivamente incluso sin eliminar los efectos de dispersión. El estudio fue publicado el 16 de agosto de 2019, en la revista Analytical and Bioanalytical Chemistry.
“Es urgente desarrollar nuevas técnicas que puedan identificar las primeras etapas del cáncer, de una manera que vaya más allá de los métodos de histopatología actuales, para aumentar las tasas de supervivencia. El acoplamiento de imágenes espectroscópicas con enfoques avanzados de ML ayuda a la detección temprana y a la comprensión del cáncer”, dijo el autor principal, el profesor Sergei Kazarian, PhD, del departamento de ingeniería química del ICL. “Existe la emoción de tener una exactitud mejorada que promete avances en la detección temprana del cáncer y la diferenciación de las etapas de la enfermedad”.
Las imágenes FTIR implican hacer brillar un haz infrarrojo sobre una muestra y medir la cantidad de esa luz que se absorbe a diferentes frecuencias, que se utiliza para producir una referencia visual de la composición química de la muestra. Y aunque el estudio se restringió al cáncer de colon, los investigadores ya han creado modelos, que tienen el potencial de poder ser aplicados a otros cánceres difíciles de diagnosticar, como el cáncer de esófago e incluso anomalías no cancerosas.
Enlace relacionado:
Colegio Imperial de Londres
Universidad de Columbia Británica
Últimas Imaginología General noticias
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
- Modelo de aprendizaje profundo diagnostica con precisión la EPOC con una sola inhalación
- Modelo de IA reconstruye escáner 3D de TC de vista dispersa con una dosis de rayos X mucho más baja
Canales
Radiografía
ver canal
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más
Tecnología de resonancia magnética impulsada por IA mejora el diagnóstico de Parkinson
Las investigaciones actuales muestran que la precisión del diagnóstico de la enfermedad de Parkinson suele oscilar entre el 55% y el 78% durante los primeros cinco años de evaluación.... MásUltrasonido
ver canal
Un pequeño robot magnético realiza escaneos 3D desde lo más profundo del cuerpo
El cáncer colorrectal es una de las principales causas de mortalidad por cáncer en todo el mundo. Sin embargo, si se detecta a tiempo, es altamente tratable. Ahora, una nueva técnica mínimamente invasiva... Más
Ultrasonido de alta resolución acelera el diagnóstico del cáncer de próstata
Cada año, se realizan aproximadamente un millón de biopsias de cáncer de próstata en Europa, con cifras similares en Estados Unidos y alrededor de 100.000 en Canadá.... Más
El primer ultrasonido inalámbrico, portátil y de cuerpo entero con un solo transductor PZT
Los dispositivos de ultrasonido desempeñan un papel vital en el campo de la medicina, utilizándose rutinariamente para examinar los tejidos y estructuras internas del cuerpo. Si bien los avances han mejorado... MásMedicina Nuclear
ver canal
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más
Técnica innovadora de imágenes PET ayuda a diagnosticar la neurodegeneración
Las enfermedades neurodegenerativas, como la esclerosis lateral amiotrófica (ELA) y la enfermedad de Alzheimer, suelen diagnosticarse solo después de que aparecen los síntomas físicos,... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más