IA mejora el diagnóstico de fracturas de cadera mediante rayos X
Por el equipo editorial de MedImaging en español Actualizado el 10 Aug 2020 |
El uso de algoritmos de inteligencia artificial (IA) para analizar imágenes de rayos X mejora la identificación de las fracturas de cadera por parte del radiólogo, según un estudio nuevo.
Desarrollada por investigadores de la Universidad de Teikyo (Tokio, Japón), la Universidad de Salud Ocupacional y Ambiental (Fukuoka, Japón) y otras instituciones, la red neuronal convolucional profunda (CNN) para detectar fracturas de cadera a partir de rayos X, utilizó la tomografía computarizada (TC) y la resonancia magnética (MRI) como estándar de oro para la comparación. El estudio involucró a 327 pacientes a quienes les realizaron una TC o RM pélvica y fueron diagnosticadas con fracturas femorales proximales; el algoritmo de IA se entrenó con 302 de estos exámenes.
Los 25 casos restantes y otros 25 pacientes control se utilizaron luego para probar el DCNN, y siete lectores participaron en este estudio; una escala de calificación continua registró el nivel de confianza de cada observador. Posteriormente, cada observador interpretó las radiografías con las salidas de la CNN y las calificó nuevamente. A continuación, se utilizó el área bajo la curva (AUC) para comparar la detección de fracturas. Los resultados mostraron que el AUC promedio de los lectores fue de 0,832; el AUC de la DCNN solo fue 0,905; y el AUC promedio de los lectores con salidas de CNN fue 0,876. El estudio fue publicado el 23 de julio de 2020 en la revista European Journal of Radiology.
“Los resultados del estudio muestran que la IA ofrece una serie de beneficios para este escenario clínico en particular. Las CNN profundas puede tener el potencial de identificar características abstractas adicionales que no han sido evidentes para el lector humano”, concluyeron el autor principal, Tsubasa Mawatari, PhD, y sus colegas. “La combinación podría mitigar la tarea, a veces desafiante, de detectar fracturas de cadera en los rayos X, aumentar la eficiencia del diagnóstico y ampliar el acceso a la interpretación de imágenes médicas de 'nivel experto'“.
El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático de IA basados en representaciones de datos de aprendizaje, a diferencia de los algoritmos específicos de tareas. Se trata de algoritmos de redes neurales convolucionales que utilizan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción, conversión y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.
Enlace relacionado:
Universidad de Teikyo
Universidad de Salud Ocupacional y Ambiental
Desarrollada por investigadores de la Universidad de Teikyo (Tokio, Japón), la Universidad de Salud Ocupacional y Ambiental (Fukuoka, Japón) y otras instituciones, la red neuronal convolucional profunda (CNN) para detectar fracturas de cadera a partir de rayos X, utilizó la tomografía computarizada (TC) y la resonancia magnética (MRI) como estándar de oro para la comparación. El estudio involucró a 327 pacientes a quienes les realizaron una TC o RM pélvica y fueron diagnosticadas con fracturas femorales proximales; el algoritmo de IA se entrenó con 302 de estos exámenes.
Los 25 casos restantes y otros 25 pacientes control se utilizaron luego para probar el DCNN, y siete lectores participaron en este estudio; una escala de calificación continua registró el nivel de confianza de cada observador. Posteriormente, cada observador interpretó las radiografías con las salidas de la CNN y las calificó nuevamente. A continuación, se utilizó el área bajo la curva (AUC) para comparar la detección de fracturas. Los resultados mostraron que el AUC promedio de los lectores fue de 0,832; el AUC de la DCNN solo fue 0,905; y el AUC promedio de los lectores con salidas de CNN fue 0,876. El estudio fue publicado el 23 de julio de 2020 en la revista European Journal of Radiology.
“Los resultados del estudio muestran que la IA ofrece una serie de beneficios para este escenario clínico en particular. Las CNN profundas puede tener el potencial de identificar características abstractas adicionales que no han sido evidentes para el lector humano”, concluyeron el autor principal, Tsubasa Mawatari, PhD, y sus colegas. “La combinación podría mitigar la tarea, a veces desafiante, de detectar fracturas de cadera en los rayos X, aumentar la eficiencia del diagnóstico y ampliar el acceso a la interpretación de imágenes médicas de 'nivel experto'“.
El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático de IA basados en representaciones de datos de aprendizaje, a diferencia de los algoritmos específicos de tareas. Se trata de algoritmos de redes neurales convolucionales que utilizan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción, conversión y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.
Enlace relacionado:
Universidad de Teikyo
Universidad de Salud Ocupacional y Ambiental
Últimas Radiografía noticias
- IA detecta la enfermedad del hígado graso a partir de radiografías de tórax
- IA detecta enfermedades cardíacas ocultas en TC de tórax existentes
- Modelo de IA ultraligero rompe barreras en el diagnóstico del cáncer de pulmón
- Herramienta de IA para radiología identifica condiciones potencialmente mortales en milisegundos
- Algoritmo de aprendizaje automático identifica riesgo cardiovascular a partir de escaneos ósea de rutina
- La IA mejora la detección temprana de los cánceres de mama de intervalo
- Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
- Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
- Las mamografías impulsadas por IA predicen el riesgo cardiovascular
- Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
- La mamografía impulsada por IA mejora la detección de cáncer en entornos de lectura única
- Los detectores de conteo de fotones prometen imágenes rápidas de rayos X en color
- La IA puede señalar mamografías para una resonancia magnética suplementaria
- Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación
- Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías
- Sensores de rayos X orgánicos imprimibles podrían transformar el tratamiento del cáncer
Canales
RM
ver canal
Modelo de IA supera a los médicos en la identificación de pacientes con mayor riesgo de paro cardíaco
La miocardiopatía hipertrófica es una de las cardiopatías hereditarias más comunes y una de las principales causas de muerte súbita cardíaca en jóvenes y deportistas.... Más
Nueva técnica de resonancia magnética revela problemas cardíacos ocultos
Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... MásUltrasonido
ver canal
Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía
El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... Más
Nueva técnica de imágenes por ultrasonido permite el monitoreo en la UCI
La tomografía computarizada por ultrasonido (TCUS) presenta una alternativa más segura a técnicas de imagen como la tomografía computarizada por rayos X (comúnmente conocida... Más
Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes
Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más
La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis
A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... MásMedicina Nuclear
ver canal
Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar
Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más
Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata
El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... MásImaginología General
ver canal
La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon
Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más
Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas
Actualmente, los pacientes con afecciones como insuficiencia cardíaca, neumonía o dificultad respiratoria suelen requerir múltiples procedimientos de diagnóstico por imagen... Más
Análisis de TC basado en IA predice daño renal en etapa temprana causado por tratamientos contra el cáncer
La terapia con radioligandos, una forma de medicina nuclear dirigida, ha cobrado relevancia recientemente por su potencial en el tratamiento de tipos específicos de tumores. Sin embargo, uno de... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más