Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

IA mejora el diagnóstico de fracturas de cadera mediante rayos X

Por el equipo editorial de MedImaging en español
Actualizado el 10 Aug 2020
El uso de algoritmos de inteligencia artificial (IA) para analizar imágenes de rayos X mejora la identificación de las fracturas de cadera por parte del radiólogo, según un estudio nuevo.

Desarrollada por investigadores de la Universidad de Teikyo (Tokio, Japón), la Universidad de Salud Ocupacional y Ambiental (Fukuoka, Japón) y otras instituciones, la red neuronal convolucional profunda (CNN) para detectar fracturas de cadera a partir de rayos X, utilizó la tomografía computarizada (TC) y la resonancia magnética (MRI) como estándar de oro para la comparación. El estudio involucró a 327 pacientes a quienes les realizaron una TC o RM pélvica y fueron diagnosticadas con fracturas femorales proximales; el algoritmo de IA se entrenó con 302 de estos exámenes.

Los 25 casos restantes y otros 25 pacientes control se utilizaron luego para probar el DCNN, y siete lectores participaron en este estudio; una escala de calificación continua registró el nivel de confianza de cada observador. Posteriormente, cada observador interpretó las radiografías con las salidas de la CNN y las calificó nuevamente. A continuación, se utilizó el área bajo la curva (AUC) para comparar la detección de fracturas. Los resultados mostraron que el AUC promedio de los lectores fue de 0,832; el AUC de la DCNN solo fue 0,905; y el AUC promedio de los lectores con salidas de CNN fue 0,876. El estudio fue publicado el 23 de julio de 2020 en la revista European Journal of Radiology.

“Los resultados del estudio muestran que la IA ofrece una serie de beneficios para este escenario clínico en particular. Las CNN profundas puede tener el potencial de identificar características abstractas adicionales que no han sido evidentes para el lector humano”, concluyeron el autor principal, Tsubasa Mawatari, PhD, y sus colegas. “La combinación podría mitigar la tarea, a veces desafiante, de detectar fracturas de cadera en los rayos X, aumentar la eficiencia del diagnóstico y ampliar el acceso a la interpretación de imágenes médicas de 'nivel experto'“.

El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático de IA basados en representaciones de datos de aprendizaje, a diferencia de los algoritmos específicos de tareas. Se trata de algoritmos de redes neurales convolucionales que utilizan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción, conversión y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.

Enlace relacionado:
Universidad de Teikyo
Universidad de Salud Ocupacional y Ambiental

New
Diagnostic Ultrasound System
DC-80A
40/80-Slice CT System
uCT 528
Ultrasound Table
Women’s Ultrasound EA Table
New
High-Precision QA Tool
DEXA Phantom

Canales

RM

ver canal
Imagen: una resonancia magnética cardíaca con contraste de un paciente con miocardiopatía hipertrófica considerado por MAARS con alto riesgo de muerte súbita (foto cortesía de la Universidad Johns Hopkins)

Modelo de IA supera a los médicos en la identificación de pacientes con mayor riesgo de paro cardíaco

La miocardiopatía hipertrófica es una de las cardiopatías hereditarias más comunes y una de las principales causas de muerte súbita cardíaca en jóvenes y deportistas.... Más

Ultrasonido

ver canal
Imagen: el nuevo dispositivo implantable para el tratamiento del dolor crónico es pequeño y flexible (foto cortesía de The Zhou Lab at USC)

Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía

El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más