Modelo de IA de alta precisión puede mejorar rendimiento del análisis de rayos X de tórax de radiólogos
Por el equipo editorial de MedImaging en español Actualizado el 11 Jul 2023 |

Un estudio reciente presenta pruebas convincentes de que un modelo de IA de alta precisión puede mejorar significativamente la capacidad de los radiólogos para analizar las radiografías de tórax. El estudio revela que solo las soluciones médicas de IA con alta precisión diagnóstica pueden mejorar notablemente el rendimiento diagnóstico de los radiólogos.
Lunit (Seúl, Corea) ha compartido los resultados de un estudio que investiga el impacto de la precisión de las soluciones médicas de inteligencia artificial en las decisiones diagnósticas de los radiólogos. La investigación involucró a un grupo de 30 médicos, compuesto por 20 radiólogos certificados con 5 a 18 años de experiencia y 10 residentes de radiología con 2 a 3 años de capacitación. El grupo evaluó un total de 120 radiografías de tórax recolectadas retrospectivamente, la mitad de pacientes con cáncer de pulmón y el resto sin anomalías. En la sesión inicial, los lectores se dividieron en dos grupos y cada grupo analizó 120 radiografías de tórax sin la ayuda de IA. En la siguiente sesión, volvieron a examinar las imágenes utilizando un modelo de IA de alta o baja precisión.
Para el estudio, los investigadores utilizaron Lunit INSIGHT CXR, una solución de inteligencia artificial disponible comercialmente para el análisis de rayos X de tórax. El modelo de baja precisión, por el contrario, se entrenó utilizando solo el 10 % de los datos utilizados para Lunit INSIGHT CXR. El AUROC (área bajo la curva característica operativa del receptor), una métrica estándar para la precisión del diagnóstico, para Lunit INSIGHT CXR fue de 0,88, mientras que el modelo de IA de baja precisión alcanzó solo 0,77. Los hallazgos del estudio mostraron que el uso del modelo de IA de alta precisión, Lunit INSIGHT CXR, condujo a una mejora significativa en el desempeño de los radiólogos. El AUROC mejoró notablemente de 0,77 a 0,82 cuando se utilizó el modelo de IA de alta precisión.
Por otro lado, el grupo que utilizó el modelo de IA de baja precisión no experimentó ninguna mejora en el desempeño, y el AUROC se mantuvo en 0,75. Curiosamente, el grupo que utilizó el modelo de IA de alta precisión mostró una mayor inclinación a aceptar sugerencias de IA. Estuvieron de acuerdo con el 67 % de las recomendaciones de IA que estaban en conflicto con sus interpretaciones iniciales, en comparación con una tasa de aceptación del 59 % del grupo que utilizó el modelo de IA de baja precisión. Además, el estudio concluyó que los factores individuales, como la experiencia de los radiólogos, su experiencia previa con la IA o las actitudes hacia la IA, tuvieron un efecto mínimo en su desempeño diagnóstico en la segunda sesión. En cambio, la precisión del modelo de IA y la precisión del diagnóstico inicial de los radiólogos se identificaron como las principales influencias en los resultados del diagnóstico final. Estos resultados subrayan la importancia del desempeño del modelo de IA cuando los radiólogos lo utilizan como lector secundario. También muestran que dicho soporte de IA puede aumentar la receptividad de los radiólogos a las sugerencias de IA, lo que lleva a diagnósticos más precisos a largo plazo.
"El estudio respalda que, independientemente de las características individuales de los radiólogos, la utilización de IA de alto rendimiento mejora significativamente la precisión disgnóstica y fomenta una mayor aceptación de la IA en las prácticas médicas", dijo Brandon Suh, director ejecutivo de Lunit. "En Lunit, estamos comprometidos con el desarrollo de soluciones impulsadas por IA que no solo mejoren los resultados de los pacientes, sino que también aumenten la experiencia de los profesionales de la salud. Esta publicación es un testimonio de nuestra dedicación para avanzar en el campo del diagnóstico del cáncer a través de tecnología de punta".
Enlaces relacionados:
Lunit
Últimas Radiografía noticias
- Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
- Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
- Las mamografías impulsadas por IA predicen el riesgo cardiovascular
- Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
- La mamografía impulsada por IA mejora la detección de cáncer en entornos de lectura única
- Los detectores de conteo de fotones prometen imágenes rápidas de rayos X en color
- La IA puede señalar mamografías para una resonancia magnética suplementaria
- Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación
- Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías
- Sensores de rayos X orgánicos imprimibles podrían transformar el tratamiento del cáncer
- Detector altamente sensible y plegable hace que la radiografía sea más segura
- Nueva tecnología de detección de cáncer de mama podría ofrecer una alternativa superior a la mamografía
- Inteligencia artificial predice con precisión el cáncer de mama años antes del diagnóstico
- Radiografía de tórax con IA detecta nódulos pulmonares tres años antes de los síntomas del cáncer de pulmón
- Modelo de IA identifica fracturas por compresión vertebral en radiografías de tórax
- La mamografía 3D avanzada puede detectar más cánceres de mama
Canales
RM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis
A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más
La IA identifica la enfermedad de la válvula cardíaca a partir de una prueba de imagen común
La insuficiencia tricúspide es una afección en la que la válvula tricúspide del corazón no se cierra completamente durante la contracción, lo que provoca un flujo sanguíneo retrógrado que puede provocar... Más
Nuevo método de imágenes permite el diagnóstico temprano y seguimiento de la diabetes tipo 2
La diabetes tipo 2 se reconoce como una enfermedad inflamatoria autoinmune, en la que la inflamación crónica provoca alteraciones en la microvasculatura de los islotes pancreáticos, un factor clave en... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásImaginología General
ver canal
Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
Dada la necesidad de detectar el cáncer de pulmón en etapas tempranas, existe una creciente necesidad de una vía de diagnóstico definitiva para pacientes con nódulos pulmonares sospechosos.... Más
Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
El cáncer de pulmón sigue siendo una de las enfermedades más difíciles de abordar, lo que hace que el diagnóstico temprano sea fundamental para un tratamiento eficaz.... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más