Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Prueba de densidad ósea predice riesgo de ataque cardíaco

Por el equipo editorial de MedImaging en español
Actualizado el 17 Aug 2023
Print article
Imagen: La IA puede proporcionar un análisis rápido de los resultados de detección de osteoporosis de rutina e informar el puntaje de calcificación (Fotografía cortesía de Shutterstock)
Imagen: La IA puede proporcionar un análisis rápido de los resultados de detección de osteoporosis de rutina e informar el puntaje de calcificación (Fotografía cortesía de Shutterstock)

Una prueba estándar de detección de osteoporosis, que mide la densidad ósea, también puede detectar un riesgo elevado de ataques cardíacos debido a la presencia de calcio en la aorta. Sin embargo, la interpretación de estas imágenes exige experiencia y puede ser un proceso lento. Una nueva investigación ahora ha revelado que el uso del aprendizaje automático para calcular el puntaje de esta prueba de calcificación puede hacer que el proceso sea más rápido y eficiente, eliminando la necesidad de una evaluación humana de los escaneos y ayudando a predecir el riesgo de ataque cardíaco.

La tarea de calificar la calcificación aórtica abdominal (CAA) a partir de imágenes producidas por máquinas de densidad ósea es un proceso cuidadoso que requiere un entrenamiento meticuloso. En consecuencia, la puntuación de la CAA no se lleva a cabo comúnmente en la práctica clínica cuando se adquieren estas imágenes. En una colaboración de investigación de varias instituciones que incluyó a la Escuela de Medicina de Harvard (Boston, MA, EUA), los científicos desarrollaron, validaron y probaron algoritmos de aprendizaje automático para la evaluación de CAA. Esta nueva herramienta, conocida como ML-AAC-24, se evaluó luego en un entorno del mundo real utilizando un estudio de registro de 8.565 hombres y mujeres mayores. Los investigadores encontraron que las puntuaciones más altas de ML-AAC-24 estaban relacionadas con un riesgo de enfermedad cardiovascular considerablemente elevado y un peor pronóstico a largo plazo.

“Durante las exploraciones DXA obtenidas para las pruebas de densidad mineral ósea, se puede ver y cuantificar la calcificación vascular de la aorta”, dijo Naeha Sharif de la Universidad Edith Cowan. "Este estudio desarrolló un algoritmo de aprendizaje automático para determinar automáticamente la gravedad de la calcificación que se corresponde estrechamente con la lectura manual que lleva mucho más tiempo de realizar".

“Este desarrollo allana el camino para su uso en entornos clínicos de rutina con poco o ningún tiempo para generar la puntuación de calcificación útil que predice ataques cardíacos”, agregó Douglas Kiel, profesor de medicina de HMS y director del Centro de Investigación Musculoesquelética en Hebrew SeniorLife.

Enlaces relacionados:
Escuela de Medicina de Harvard

New
X-Ray Illuminator
X-Ray Viewbox Illuminators
MRI System
Ingenia Prodiva 1.5T CS
New
Stereotactic QA Phantom
StereoPHAN
Miembro Plata
X-Ray QA Meter
T3 AD Pro

Print article

Canales

Ultrasonido

ver canal
Imagen: el modelo entrenado en ecocardiografía, puede identificar enfermedades hepáticas en personas asintomáticas (foto cortesía de 123RF)

Inteligencia artificial detecta enfermedad hepática mediante ecocardiogramas

La ecocardiografía es un procedimiento de diagnóstico que utiliza ultrasonidos para visualizar el corazón y sus estructuras asociadas. Esta prueba de diagnóstico por imágenes... Más

Medicina Nuclear

ver canal
Imagen: un fármaco reutilizado para la ELA se ha convertido en una sonda de imágenes para ayudar a diagnosticar la neurodegeneración (Foto cortesía de St. Jude Children’s Research Hospital)

Técnica innovadora de imágenes PET ayuda a diagnosticar la neurodegeneración

Las enfermedades neurodegenerativas, como la esclerosis lateral amiotrófica (ELA) y la enfermedad de Alzheimer, suelen diagnosticarse solo después de que aparecen los síntomas físicos,... Más

Imaginología General

ver canal
Imagen: Casos de cáncer de pulmón confirmados histológicamente detectados en referencia inmediata espués de una exploración inicial o un seguimiento a corto plazo de 3 meses. (Foto cortesía de DOI: 10.1016/j.ejca.2025.115324)

La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.

El cáncer de pulmón afecta a más de 48.000 personas en el Reino Unido cada año, y la detección temprana es clave para mejorar las tasas de supervivencia.... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más