Examen de mamografía respaldado por IA detecta 20 % más cánceres y reduce a la mitad la carga de trabajo de los radiólogos
Por el equipo editorial de MedImaging en español Actualizado el 20 Aug 2023 |

Se ha demostrado que la mamografía de detección del cáncer de mama mejora el pronóstico y reduce la mortalidad mediante la detección temprana de la enfermedad, lo que permite un tratamiento oportuno. Sin embargo, se estima que entre el 20 y el 30 % de los cánceres de intervalo, que deberían haberse detectado en el examen previo, se pasan por alto y numerosos hallazgos sospechosos a menudo resultan benignos. Para garantizar una alta sensibilidad, las pautas europeas recomiendan que dos radiólogos revisen las mamografías, pero hay escasez de radiólogos de mama en muchos países y lleva más de una década capacitar a un radiólogo para que sea competente en la lectura de mamografías.
La inteligencia artificial (IA) se ha sugerido como un posible segundo lector automatizado para mamografías, lo que podría disminuir la carga de trabajo del radiólogo y mejorar la precisión de la detección. La tecnología ha mostrado resultados prometedores en estudios retrospectivos que utilizan IA para clasificar los exámenes en lectura simple o doble y ayudar a los radiólogos a identificar características sospechosas para reducir los resultados falsos negativos con el uso de detección asistida por computadora (CAD). Sin embargo, ha habido evidencia muy menos sólida de ensayos prospectivos aleatorizados para respaldar esto. Ahora, un análisis de seguridad provisional del primer ensayo controlado aleatorizado de este tipo, que involucró a más de 80.000 mujeres suecas, descubrió que el análisis de mamografía asistida por IA coincide con la eficacia de dos radiólogos de mama para detectar cáncer de mama, sin un aumento en los falsos positivos y reduciendo la carga de trabajo de lectura de pantalla en casi la mitad.
En un estudio realizado por investigadores de la Universidad de Lund (Lund, Suecia), 80.033 mujeres de entre 40 y 80 años que se sometieron a mamografías en cuatro ubicaciones en el suroeste de Suecia desde abril de 2021 hasta julio de 2022 fueron asignadas aleatoriamente a un análisis respaldado por IA (donde un sistema comercial de lectura de mamografías compatible con IA examinó las mamografías antes de que uno o dos radiólogos también las leyeran) o un análisis estándar realizado por dos radiólogos sin asistencia de IA. Esta evaluación inicial del ensayo Detección de Mamografía con Inteligencia Artificial (MASAI, por sus siglas en inglés) comparó el rendimiento de la detección temprana y la carga de trabajo de lectura de pantalla entre los dos grupos.
El límite mínimo clínicamente aceptable para la seguridad en el grupo respaldado por IA se estableció en una tasa de detección de cáncer superior a tres cánceres por cada 1.000 mujeres examinadas. La suposición era que la tasa de detección podría disminuir ya que la mayoría de los exámenes de detección se someterían a una lectura única en lugar de una lectura doble. La tasa de detección de referencia con doble lectura en el programa de detección actual es de cinco cánceres por cada 1.000 mujeres examinadas. En el análisis respaldado por IA, el sistema de IA analizó inicialmente la imagen de la mamografía y predijo el riesgo de cáncer en una escala del uno al diez, siendo uno el riesgo más bajo y 10 el más alto. Las imágenes con una puntuación de riesgo inferior a 10 fueron analizadas más a fondo por un radiólogo, mientras que las imágenes con una puntuación de riesgo de 10 fueron analizadas por dos radiólogos.
El sistema también ofreció marcas CAD para ayudar a los radiólogos a interpretar las imágenes de mamografía con precisión. Las mujeres fueron llamadas nuevamente para realizar más pruebas en caso de hallazgos sospechosos. Los radiólogos tomaron la decisión final de llamar a las mujeres y recibieron instrucciones de llamar a los casos dentro del 1% superior de riesgo, salvo falsos positivos claros. La IA no dio una puntuación de riesgo en el 0,8% de los casos (306/39.996), que fueron derivados a atención estándar (doble lectura). Las tasas de recuperación promediaron el 2,2 % (861 mujeres) para la detección asistida por IA y el 2,0 % (817 mujeres) para la lectura doble estándar sin IA. Estos fueron similares a la tasa promedio de recuperación del 2,1 % en la clínica seis meses antes de que comenzara el ensayo, lo que indica que no hubo una disminución en las tasas de detección de cáncer.
En general, se diagnosticó cáncer a 244 mujeres (28 %) recuperadas de la detección asistida por IA, en comparación con 203 mujeres (25 %) recuperadas de la detección estándar, lo que resultó en 41 cánceres adicionales detectados mediante IA. La tasa de falsos positivos fue del 1,5 % en ambos grupos. En general, las pruebas de detección respaldadas por IA dieron como resultado una tasa de detección de cáncer de seis por cada 1.000 mujeres examinadas en comparación con cinco por cada 1.000 para la lectura doble estándar sin IA, lo que equivale a detectar un cáncer adicional por cada 1.000 mujeres examinadas. Significativamente, hubo 36.886 lecturas de pantalla menos por parte de los radiólogos en el grupo apoyado por IA que en el grupo de control (46.345 frente a 83.231), lo que resultó en una reducción del 44 % en la carga de trabajo de lectura de pantalla de los radiólogos.
Aunque el tiempo real ahorrado con el uso de IA no se midió en el ensayo, los investigadores estiman que si un radiólogo lee un promedio de 50 mamografías por hora, a un radiólogo le habría llevado 4,6 meses menos leer los aproximadamente 40.000 exámenes de detección con IA en comparación con los aproximadamente 40.000 en el grupo de control que tenían doble lectura. El ensayo MASAI continuará determinando si la mamografía asistida por IA reduce los cánceres de intervalo. Los resultados finales del ensayo que determinan si el uso de IA en la interpretación de imágenes de mamografía conduce a una reducción en los cánceres de intervalo en 100.000 mujeres seguidas durante dos años y, en última instancia, si el uso de IA en la mamografía está justificado, no se esperan hasta dentro de varios años.
“El mayor potencial de la IA en este momento es que podría permitir que los radiólogos se sientan menos cargados por la cantidad excesiva de lecturas”, dijo la autora principal, la Dra. Kristina Lång, de la Universidad de Lund. “Si bien nuestro sistema de detección respaldado por IA requiere al menos un radiólogo a cargo de la detección, potencialmente podría eliminar la necesidad de doble lectura de la mayoría de las mamografías, lo que alivia la presión sobre las cargas de trabajo y permite que los radiólogos se concentren en diagnósticos más avanzados mientras acortan tiempos de espera de los pacientes.”
Enlaces relacionados:
Universidad de Lund
Últimas Imaginología General noticias
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis
A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más
La IA identifica la enfermedad de la válvula cardíaca a partir de una prueba de imagen común
La insuficiencia tricúspide es una afección en la que la válvula tricúspide del corazón no se cierra completamente durante la contracción, lo que provoca un flujo sanguíneo retrógrado que puede provocar... Más
Nuevo método de imágenes permite el diagnóstico temprano y seguimiento de la diabetes tipo 2
La diabetes tipo 2 se reconoce como una enfermedad inflamatoria autoinmune, en la que la inflamación crónica provoca alteraciones en la microvasculatura de los islotes pancreáticos, un factor clave en... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más