Algoritmos de IA predicen la ubicación y el tamaño de tumores a partir de imágenes médicas
Por el equipo editorial de MedImaging en español Actualizado el 06 Dec 2024 |

Los pacientes con cáncer suelen presentar numerosas lesiones o cambios patológicos causados por el crecimiento del tumor, y capturarlos todos es crucial para obtener una visión integral de su condición. Las imágenes desempeñan un papel vital en el diagnóstico del cáncer, ya que determinar con precisión la ubicación, el tamaño y el tipo de tumores es esencial para seleccionar el tratamiento adecuado. Dos técnicas de imagen clave que se utilizan son la tomografía por emisión de positrones (PET) y la tomografía computarizada (TC). La PET utiliza radionúclidos para visualizar los procesos metabólicos en el cuerpo, ya que la actividad metabólica de los tumores malignos es significativamente mayor que la del tejido benigno. Para este propósito, se utiliza comúnmente la flúor-18-desoxiglucosa (FDG), una glucosa marcada radiactivamente. Por el contrario, la TC explora el cuerpo capa por capa con un tubo de rayos X para visualizar las estructuras anatómicas y localizar los tumores. Los médicos a menudo marcan manualmente los tamaños de los tumores en imágenes de cortes 2D, un proceso que requiere mucho tiempo y trabajo.
La inteligencia artificial (IA) ha demostrado un gran potencial para mejorar el análisis de imágenes médicas. Los algoritmos de aprendizaje profundo, por ejemplo, pueden identificar automáticamente la ubicación y el tamaño de los tumores. Al automatizar este proceso, se puede lograr un importante ahorro de tiempo y los resultados pueden ser más consistentes y precisos. Los siete mejores equipos participantes en AutoPET, una competición internacional de análisis de imágenes médicas, han publicado en la revista Nature Machine Intelligence un informe sobre cómo los algoritmos pueden detectar lesiones tumorales en PET y TC. Investigadores del Instituto Tecnológico de Karlsruhe (KIT, Karlsruhe, Alemania) participaron en la competición AutoPET 2022 y obtuvieron el quinto puesto entre 27 equipos, con 359 participantes de todo el mundo. La competición encomendó a los equipos la tarea de segmentar automáticamente las lesiones tumorales metabólicamente activas visualizadas en exploraciones PET/TC de cuerpo entero.
Los equipos utilizaron un gran conjunto de datos PET/CT anotados para entrenar sus algoritmos, todos ellos basados en técnicas de aprendizaje profundo. Esta forma de aprendizaje automático utiliza redes neuronales artificiales de múltiples capas para detectar patrones complejos y correlaciones dentro de grandes conjuntos de datos. Los resultados, publicados ahora en Nature Machine Intelligence, muestran que la combinación de los algoritmos de mayor rendimiento en un enfoque de conjunto supera a los modelos individuales en la detección de lesiones tumorales con alta eficiencia y precisión. Los investigadores señalan que es necesario un mayor refinamiento de estos algoritmos para mejorar su resistencia a las variables externas, de modo que puedan implementarse de manera efectiva en entornos clínicos de rutina. El objetivo final es automatizar por completo el análisis de imágenes médicas PET y TC en un futuro cercano.
"Si bien el rendimiento de los algoritmos en la evaluación de datos de imágenes depende en parte de la cantidad y la calidad de los datos, el diseño del algoritmo es otro factor decisivo, por ejemplo en lo que respecta a las decisiones que se toman en el posprocesamiento de la segmentación prevista", explicó el investigador del KIT Rainer Stiefelhagen.
Últimas Imaginología General noticias
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
- Modelo de aprendizaje profundo diagnostica con precisión la EPOC con una sola inhalación
- Modelo de IA reconstruye escáner 3D de TC de vista dispersa con una dosis de rayos X mucho más baja
- Nuevo escáner identifica daños cerebrales en pacientes con ictus en campos magnéticos más bajos
Canales
Radiografía
ver canal
Los detectores de conteo de fotones prometen imágenes rápidas de rayos X en color
Durante muchos años, los profesionales de la salud han dependido de las radiografías 2D tradicionales para diagnosticar fracturas óseas comunes, aunque a menudo pueden pasarse por... Más
La IA puede señalar mamografías para una resonancia magnética suplementaria
Para lograr la mayor precisión de detección, las pautas internacionales recomiendan combinar la mamografía y la resonancia magnética para las mujeres con un riesgo de cáncer... Más
Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación
La tomografía computarizada (TC) ha sido durante mucho tiempo una herramienta esencial en la obtención de imágenes modernas, ya que ofrece vistas 3D detalladas del cuerpo humano y otros materiales.... MásRM
ver canal
La RM biparamétrica combinada con IA mejora la detección del cáncer de próstata clínicamente significativo
Las tecnologías de inteligencia artificial (IA) están transformando la forma en que se analizan las imágenes médicas, ofreciendo capacidades sin precedentes para la extracción... Más
Plataforma de imágenes cerebrales impulsada por IA orienta el tratamiento del ACV
Cada año, aproximadamente 800.000 personas en los Estados Unidos sufren un accidente cerebrovascular (ACV), con un impacto desproporcionado en grupos marginados y minoritarios. Los ACV varían... MásUltrasonido
ver canal
Inteligencia artificial detecta enfermedad hepática mediante ecocardiogramas
La ecocardiografía es un procedimiento de diagnóstico que utiliza ultrasonidos para visualizar el corazón y sus estructuras asociadas. Esta prueba de diagnóstico por imágenes... Más
Imágenes por ultrasonido rastrean de forma no invasiva la respuesta tumoral a la radioterapia y la inmunoterapia
Si bien la inmunoterapia representa una opción prometedora en la lucha contra el cáncer de mama triple negativo, muchos pacientes no responden a los tratamientos actuales. Uno de los principales... Más
La IA mejora la detección de defectos cardíacos congénitos en ecografías prenatales rutinarias
Los defectos cardíacos congénitos, que son anomalías del corazón presentes al nacer, son el tipo más común de defecto congénito. Aproximadamente 1 de cada 4 bebés que nacen con un defecto cardíaco tendrá... MásMedicina Nuclear
ver canal
Técnica innovadora de imágenes PET ayuda a diagnosticar la neurodegeneración
Las enfermedades neurodegenerativas, como la esclerosis lateral amiotrófica (ELA) y la enfermedad de Alzheimer, suelen diagnosticarse solo después de que aparecen los síntomas físicos,... Más
Nueva prueba de imagen molecular mejora el diagnóstico del cáncer de pulmón
El cáncer de pulmón sigue siendo una de las principales causas de muerte por cáncer, principalmente porque a menudo no se detecta hasta que alcanza etapas más avanzadas y agresivas. El panitumumab, un... Más![Imagen: [18F]3F4AP en un sujeto humano después de una lesión medular leve e incompleta (foto cortesía de The Journal of Nuclear Medicine, DOI:10.2967/jnumed.124.268242) Imagen: [18F]3F4AP en un sujeto humano después de una lesión medular leve e incompleta (foto cortesía de The Journal of Nuclear Medicine, DOI:10.2967/jnumed.124.268242)](https://globetechcdn.com/mobile_es_medicalimaging/images/stories/articles/article_images/2025-02-24/Brugarolas_F8.large.jpg)
Nueva técnica de PET visualiza lesiones de la médula espinal para predecir la recuperación
Cada año, alrededor de 18.000 personas en los Estados Unidos sufren lesiones de la médula espinal, lo que provoca una pérdida severa de movilidad y, con frecuencia, una lucha de por... Más![Imágenes de autorradiografía que muestran la unión de [18F]flortaucipir, [18F]MK6240 y [18F]PI2620 en la corteza prefrontal, el hipocampo y el cerebelo (A) y en todo el hemisferio cerebral (B) de cerebros de control y con EA (Foto cortesía de UFRGS) Imágenes de autorradiografía que muestran la unión de [18F]flortaucipir, [18F]MK6240 y [18F]PI2620 en la corteza prefrontal, el hipocampo y el cerebelo (A) y en todo el hemisferio cerebral (B) de cerebros de control y con EA (Foto cortesía de UFRGS)](https://globetechcdn.com/mobile_es_medicalimaging/images/stories/articles/article_images/2025-02-12/F2.large.jpg)
Los radiotrazadores de Tau de última generación superan a los agentes de imagen actuales en la detección del Alzheimer
En la enfermedad de Alzheimer, los ovillos de tau están estrechamente relacionados con el deterioro cognitivo: cuanto mayor es el número de ovillos, más grave es el deterioro cognitivo.... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más