Modelo de IA reconstruye escáner 3D de TC de vista dispersa con una dosis de rayos X mucho más baja
Por el equipo editorial de MedImaging en español Actualizado el 27 Dec 2024 |

Si bien las tomografías computarizadas en 3D proporcionan imágenes detalladas de las estructuras internas, las 1.000 a 2.000 radiografías capturadas desde diferentes ángulos durante la exploración pueden aumentar el riesgo de cáncer, especialmente para los pacientes vulnerables. Las tomografías computarizadas (TC) de vista dispersa, que utilizan menos proyecciones de rayos X (tan pocas como 100), reducen significativamente la exposición a la radiación, pero presentan desafíos para la reconstrucción precisa de imágenes.
Recientemente, las técnicas de aprendizaje supervisado, una forma de aprendizaje automático que entrena algoritmos con datos etiquetados, han mejorado la velocidad y la resolución de las reconstrucciones de imágenes de TC de vista dispersa y de resonancia magnética (RM) con muestras insuficientes. Sin embargo, etiquetar grandes conjuntos de datos de entrenamiento es un proceso que consume mucho tiempo y es costoso. Ahora, los investigadores han desarrollado un nuevo marco que funciona de manera eficiente con imágenes 3D, haciendo que el método sea más aplicable tanto para la TC como para la RM.
Este nuevo marco, llamado DiffusionBlend, fue desarrollado por investigadores de la Facultad de Ingeniería de la Universidad de Michigan (UM; Ann Arbor, MI, EUA). Emplea un modelo de difusión, una técnica de aprendizaje autosupervisado que aprende una distribución de datos previa, para permitir la reconstrucción de TC en 3D de vista dispersa a través de un muestreo posterior.
DiffusionBlend aprende correlaciones espaciales entre cortes de imágenes 2D cercanos, conocidos como difusión previa de parches 3D, y luego combina las puntuaciones de estos parches de múltiples cortes para crear el volumen completo de la imagen de TC en 3D. Cuando se probó en un conjunto de datos públicos de TC en 3D de vista dispersa, DiffusionBlend superó varios métodos de referencia, incluidas cuatro técnicas de difusión con ocho, seis y cuatro vistas, logrando una calidad de imagen computacional comparable o superior.
Para mejorar aún más su practicidad, se aplicaron métodos de aceleración, reduciendo el tiempo de reconstrucción de TC de DiffusionBlend a una hora, en comparación con las 24 horas requeridas por los métodos anteriores. Si bien los métodos de aprendizaje profundo a veces pueden introducir artefactos visuales (imágenes generadas por IA de características inexistentes), esto puede ser problemático para el diagnóstico del paciente. Para mitigar este problema, los investigadores emplearon la optimización de la consistencia de los datos, específicamente utilizando el método de gradiente conjugado, y evaluaron qué tan bien las imágenes generadas coincidían con las mediciones reales utilizando métricas como la relación señal-ruido.
"Estamos todavía en las primeras etapas de esto, pero hay mucho potencial aquí. Creo que los principios de este método pueden extenderse a cuatro dimensiones, tres dimensiones espaciales más el tiempo, para aplicaciones como la obtención de imágenes del corazón latiendo o las contracciones del estómago", dijo Jeff Fessler, profesor distinguido de Ingeniería Eléctrica y Ciencias de la Computación William L. Root en la UM y coautor correspondiente del estudio.
Enlaces relacionados:
University of Michigan Engineering
Últimas Imaginología General noticias
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
- Modelo de aprendizaje profundo diagnostica con precisión la EPOC con una sola inhalación
- Nuevo escáner identifica daños cerebrales en pacientes con ictus en campos magnéticos más bajos
- Herramienta de IA ofrece cribado oportunista para enfermedades cardíacas utilizando tomografías computarizadas reutilizadas
Canales
Radiografía
ver canal
Los detectores de conteo de fotones prometen imágenes rápidas de rayos X en color
Durante muchos años, los profesionales de la salud han dependido de las radiografías 2D tradicionales para diagnosticar fracturas óseas comunes, aunque a menudo pueden pasarse por... Más
La IA puede señalar mamografías para una resonancia magnética suplementaria
Para lograr la mayor precisión de detección, las pautas internacionales recomiendan combinar la mamografía y la resonancia magnética para las mujeres con un riesgo de cáncer... Más
Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación
La tomografía computarizada (TC) ha sido durante mucho tiempo una herramienta esencial en la obtención de imágenes modernas, ya que ofrece vistas 3D detalladas del cuerpo humano y otros materiales.... MásRM
ver canal
La RM biparamétrica combinada con IA mejora la detección del cáncer de próstata clínicamente significativo
Las tecnologías de inteligencia artificial (IA) están transformando la forma en que se analizan las imágenes médicas, ofreciendo capacidades sin precedentes para la extracción... Más
Plataforma de imágenes cerebrales impulsada por IA orienta el tratamiento del ACV
Cada año, aproximadamente 800.000 personas en los Estados Unidos sufren un accidente cerebrovascular (ACV), con un impacto desproporcionado en grupos marginados y minoritarios. Los ACV varían... MásUltrasonido
ver canal
Inteligencia artificial detecta enfermedad hepática mediante ecocardiogramas
La ecocardiografía es un procedimiento de diagnóstico que utiliza ultrasonidos para visualizar el corazón y sus estructuras asociadas. Esta prueba de diagnóstico por imágenes... Más
Imágenes por ultrasonido rastrean de forma no invasiva la respuesta tumoral a la radioterapia y la inmunoterapia
Si bien la inmunoterapia representa una opción prometedora en la lucha contra el cáncer de mama triple negativo, muchos pacientes no responden a los tratamientos actuales. Uno de los principales... Más
La IA mejora la detección de defectos cardíacos congénitos en ecografías prenatales rutinarias
Los defectos cardíacos congénitos, que son anomalías del corazón presentes al nacer, son el tipo más común de defecto congénito. Aproximadamente 1 de cada 4 bebés que nacen con un defecto cardíaco tendrá... MásMedicina Nuclear
ver canal
Técnica innovadora de imágenes PET ayuda a diagnosticar la neurodegeneración
Las enfermedades neurodegenerativas, como la esclerosis lateral amiotrófica (ELA) y la enfermedad de Alzheimer, suelen diagnosticarse solo después de que aparecen los síntomas físicos,... Más
Nueva prueba de imagen molecular mejora el diagnóstico del cáncer de pulmón
El cáncer de pulmón sigue siendo una de las principales causas de muerte por cáncer, principalmente porque a menudo no se detecta hasta que alcanza etapas más avanzadas y agresivas. El panitumumab, un... Más![Imagen: [18F]3F4AP en un sujeto humano después de una lesión medular leve e incompleta (foto cortesía de The Journal of Nuclear Medicine, DOI:10.2967/jnumed.124.268242) Imagen: [18F]3F4AP en un sujeto humano después de una lesión medular leve e incompleta (foto cortesía de The Journal of Nuclear Medicine, DOI:10.2967/jnumed.124.268242)](https://globetechcdn.com/mobile_es_medicalimaging/images/stories/articles/article_images/2025-02-24/Brugarolas_F8.large.jpg)
Nueva técnica de PET visualiza lesiones de la médula espinal para predecir la recuperación
Cada año, alrededor de 18.000 personas en los Estados Unidos sufren lesiones de la médula espinal, lo que provoca una pérdida severa de movilidad y, con frecuencia, una lucha de por... Más![Imágenes de autorradiografía que muestran la unión de [18F]flortaucipir, [18F]MK6240 y [18F]PI2620 en la corteza prefrontal, el hipocampo y el cerebelo (A) y en todo el hemisferio cerebral (B) de cerebros de control y con EA (Foto cortesía de UFRGS) Imágenes de autorradiografía que muestran la unión de [18F]flortaucipir, [18F]MK6240 y [18F]PI2620 en la corteza prefrontal, el hipocampo y el cerebelo (A) y en todo el hemisferio cerebral (B) de cerebros de control y con EA (Foto cortesía de UFRGS)](https://globetechcdn.com/mobile_es_medicalimaging/images/stories/articles/article_images/2025-02-12/F2.large.jpg)
Los radiotrazadores de Tau de última generación superan a los agentes de imagen actuales en la detección del Alzheimer
En la enfermedad de Alzheimer, los ovillos de tau están estrechamente relacionados con el deterioro cognitivo: cuanto mayor es el número de ovillos, más grave es el deterioro cognitivo.... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más