Mejora tecnología de ultrasonido con nanobarras de oro encerradas en polímero
|
Por el equipo editorial de MedImaging en español Actualizado el 30 Apr 2013 |

Imagen: Una señal óptica, representada por la flecha roja, entra en contacto con el metamaterial e interpreta las ondas de ultrasonido, generando una señal óptica alterada que se procesa para producir una imagen de alta calidad.
La tecnología de ultrasonido podrá mejorarse pronto significativamente lo que le permitiría generar imágenes de alta resolución y alta calidad, debido al desarrollo de un nuevo material clave.
El material, que convierte las ondas de ultrasonido en señales ópticas que se pueden usar para producir una imagen, es el resultado de un esfuerzo colaborativo del Prof. Vladislav Yakovlev, un profesor en el departamento de ingeniería biomédica de la Universidad de Texas A&M (College Station, EUA), e investigadores del King’s College de Londres (Reino Unido ), La Universidad de la Reina en Belfast (Irlanda), y la Universidad de Massachusetts Lowell (EUA). Los resultados de su estudio aparecen en la edición del 1 de Marzo de 2013 de la revista Advanced Materials.
La sustancia modificada, conocida como un “metamaterial,” ofrece ventajas sustanciales sobre la tecnología tradicional de ultrasonido, que genera imágenes transformando las ondas de ultrasonido en señales eléctricas, explicó el Prof. Yakovlev. Aunque esa tecnología ha mejorado con los años, similar a la mejora en las imágenes de los sonogramas, está principalmente restringida por el ancho de banda y las limitaciones de sensibilidad, anotó. Esas limitaciones, añadió, han sido el obstáculo principal cuando se van a producir imágenes de alta calidad que puedan servir como herramientas diagnósticas poderosas.
El metamaterial desarrollado por el Prof. Yakovlev y sus colegas no está sujeto a esas limitaciones, principalmente porque convierte las ondas de ultrasonido en señales ópticas en vez de eléctricas. El procesamiento óptico de la señal no limita la banda ancha o la sensibilidad del transductor (convertidor), que es vital para generar imágenes muy detalladas, dijo el Prof. Yakovlev. “Una banda ancha alta permite tomar la muestras del cambio de distancia de las ondas acústicas con una precisión alta”, anotó el Prof. Yakovlev. “Esto se traduce en una imagen que muestra mayor detalle. La sensibilidad mayor le permite ver más profundo en el tejido, sugiriendo que tenemos el potencial para generar imágenes que pueden no haber sido posibles con la tecnología del ultrasonido convencional”.
Lo que significa esto es que este material nuevo puede permitir que los dispositivos de ultrasonido vean lo que aún no han podido ver. El avance puede mejorar significativamente una tecnología que se usa en varias aplicaciones biomédicas. Además de ser usado para visualizar los fetos durante el cuidado regular y de urgencias, el ultrasonido se usa para propósitos diagnósticos en eventos de trauma y aun como un medio de descomponer el tejido y acelerar los efectos de las terapias de medicamentos.
Aunque esta investigación aún no está lista para la incorporación en la tecnología de ultrasonido, ha mostrado efectivamente cómo la tecnología convencional puede ser sustancialmente mejorada usando el material de ingeniería recientemente construido creado por su equipo, reportó el Prof. Yakovlev. La sustancia está compuesta de nanobarras de oro integradas en un polímero llamado un polipirrol. Una señal óptica es enviada a este compuesto donde interactúa con y es cambiada en ondas de ultrasonido antes de pasar a través del material. Un dispositivo de detección luego lee la señal óptica cambiada, analizando los cambios en sus características ópticas para procesar una imagen de resolución más alta.
“Desarrollamos un material que permite el procesamiento de la señal óptica del ultrasonido”, concluyó el Prof. Yakovlev. “No existe nada como este material en la naturaleza así que construimos un material que suministrara las propiedades que necesitábamos. Tiene sensibilidad mayor y ancho de banda más amplio. Podemos ir de 0–150 MHz sin sacrificar la sensibilidad. La tecnología actual típicamente experimenta una disminución sustancial en la sensibilidad alrededor de 50 MHz. Este metamaterial puede convertir eficazmente una onda acústica en una señal óptica sin restringir el ancho de banda del transductor, y su potencial en aplicaciones médicas representa la primera implementación práctica de este metamaterial.”
Enlaces relacionados:
Texas A&M University
King’s College London
Queen’s University Belfast
University of Massachusetts Lowell
El material, que convierte las ondas de ultrasonido en señales ópticas que se pueden usar para producir una imagen, es el resultado de un esfuerzo colaborativo del Prof. Vladislav Yakovlev, un profesor en el departamento de ingeniería biomédica de la Universidad de Texas A&M (College Station, EUA), e investigadores del King’s College de Londres (Reino Unido ), La Universidad de la Reina en Belfast (Irlanda), y la Universidad de Massachusetts Lowell (EUA). Los resultados de su estudio aparecen en la edición del 1 de Marzo de 2013 de la revista Advanced Materials.
La sustancia modificada, conocida como un “metamaterial,” ofrece ventajas sustanciales sobre la tecnología tradicional de ultrasonido, que genera imágenes transformando las ondas de ultrasonido en señales eléctricas, explicó el Prof. Yakovlev. Aunque esa tecnología ha mejorado con los años, similar a la mejora en las imágenes de los sonogramas, está principalmente restringida por el ancho de banda y las limitaciones de sensibilidad, anotó. Esas limitaciones, añadió, han sido el obstáculo principal cuando se van a producir imágenes de alta calidad que puedan servir como herramientas diagnósticas poderosas.
El metamaterial desarrollado por el Prof. Yakovlev y sus colegas no está sujeto a esas limitaciones, principalmente porque convierte las ondas de ultrasonido en señales ópticas en vez de eléctricas. El procesamiento óptico de la señal no limita la banda ancha o la sensibilidad del transductor (convertidor), que es vital para generar imágenes muy detalladas, dijo el Prof. Yakovlev. “Una banda ancha alta permite tomar la muestras del cambio de distancia de las ondas acústicas con una precisión alta”, anotó el Prof. Yakovlev. “Esto se traduce en una imagen que muestra mayor detalle. La sensibilidad mayor le permite ver más profundo en el tejido, sugiriendo que tenemos el potencial para generar imágenes que pueden no haber sido posibles con la tecnología del ultrasonido convencional”.
Lo que significa esto es que este material nuevo puede permitir que los dispositivos de ultrasonido vean lo que aún no han podido ver. El avance puede mejorar significativamente una tecnología que se usa en varias aplicaciones biomédicas. Además de ser usado para visualizar los fetos durante el cuidado regular y de urgencias, el ultrasonido se usa para propósitos diagnósticos en eventos de trauma y aun como un medio de descomponer el tejido y acelerar los efectos de las terapias de medicamentos.
Aunque esta investigación aún no está lista para la incorporación en la tecnología de ultrasonido, ha mostrado efectivamente cómo la tecnología convencional puede ser sustancialmente mejorada usando el material de ingeniería recientemente construido creado por su equipo, reportó el Prof. Yakovlev. La sustancia está compuesta de nanobarras de oro integradas en un polímero llamado un polipirrol. Una señal óptica es enviada a este compuesto donde interactúa con y es cambiada en ondas de ultrasonido antes de pasar a través del material. Un dispositivo de detección luego lee la señal óptica cambiada, analizando los cambios en sus características ópticas para procesar una imagen de resolución más alta.
“Desarrollamos un material que permite el procesamiento de la señal óptica del ultrasonido”, concluyó el Prof. Yakovlev. “No existe nada como este material en la naturaleza así que construimos un material que suministrara las propiedades que necesitábamos. Tiene sensibilidad mayor y ancho de banda más amplio. Podemos ir de 0–150 MHz sin sacrificar la sensibilidad. La tecnología actual típicamente experimenta una disminución sustancial en la sensibilidad alrededor de 50 MHz. Este metamaterial puede convertir eficazmente una onda acústica en una señal óptica sin restringir el ancho de banda del transductor, y su potencial en aplicaciones médicas representa la primera implementación práctica de este metamaterial.”
Enlaces relacionados:
Texas A&M University
King’s College London
Queen’s University Belfast
University of Massachusetts Lowell
Últimas Ultrasonido noticias
- Sonda de ultrasonido obtiene imágenes de todo el órgano en 4D

- Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes
- Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil
- Avance en modelo de aprendizaje profundo mejora las imágenes médicas 3D con dispositivos portátiles
- Sistema de imágenes mamarias indoloro puede realizar una exploración del cáncer en un minuto
- Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía
- Nueva técnica de imágenes por ultrasonido permite el monitoreo en la UCI
- Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes
- La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis
- La IA identifica la enfermedad de la válvula cardíaca a partir de una prueba de imagen común
- Nuevo método de imágenes permite el diagnóstico temprano y seguimiento de la diabetes tipo 2
- Técnica de microscopía basada en ultrasonido ayuda a diagnosticar enfermedades de pequeños vasos
- Células inmunitarias activadas por ultrasonido destruyen células cancerosas
- Un pequeño robot magnético realiza escaneos 3D desde lo más profundo del cuerpo
- Ultrasonido de alta resolución acelera el diagnóstico del cáncer de próstata
- El primer ultrasonido inalámbrico, portátil y de cuerpo entero con un solo transductor PZT
Canales
Radiografía
ver canal
Avance en rayos X captura tres tipos de contraste de imagen en una sola toma
La detección de cáncer en etapas tempranas o cambios sutiles en las capas profundas de los tejidos ha sido un desafío para los sistemas de rayos X convencionales, que dependen únicamente... Más
La IA genera radiografías futuras de rodilla para predecir el riesgo de progresión de la osteoartritis
La osteoartritis, una enfermedad articular degenerativa que afecta a más de 500 millones de personas en todo el mundo, es la principal causa de discapacidad en adultos mayores. Las herramientas... Más
Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres
Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... MásRM
ver canal
Nuevo enfoque de imagen para mejorar el tratamiento de lesiones de la médula espinal
La disfunción vascular en la médula espinal contribuye a múltiples afecciones neurológicas, como lesiones traumáticas y mielopatía cervical degenerativa, donde... Más
Modelo asistido por IA mejora las imágenes de resonancia magnética cardíaca
Una resonancia magnética cardíaca puede revelar información crucial sobre la función cardíaca y cualquier anomalía, pero las exploraciones tradicionales tardan... MásMedicina Nuclear
ver canal
Las imágenes PET de la inflamación predicen la recuperación y guían la terapia tras un infarto cardíaco
El infarto agudo de miocardio puede provocar daño cardíaco permanente; sin embargo, los médicos aún carecen de herramientas fiables para identificar qué pacientes re... Más
Un enfoque radioteranóstico detecta, elimina y reprograma cánceres agresivos
Los cánceres agresivos como el osteosarcoma y el glioblastoma suelen resistir las terapias estándar, prosperar en entornos tumorales hostiles y reaparecer a pesar de la cirugía, la... MásImaginología General
ver canal
Enfoque de escaneo 3D permite una cirugía cerebral ultraprecisa
La navegación precisa es fundamental en neurocirugía, pero incluso pequeños errores de alineación pueden afectar los resultados cuando se opera en zonas profundas del cerebro.... Más
Herramienta de IA mejora el proceso de imágenes médicas en un 90%
La identificación precisa de distintas regiones dentro de estudios médicos, un proceso conocido como segmentación de imágenes médicas, es fundamental para el diagnóstico,... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más







