Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Modelo para identificar las lesiones mamarias

Por el equipo editorial de MedImaging en español
Actualizado el 01 Nov 2017
Print article
Imagen: El diagrama de dispersión muestra la puntuación del modelo de aprendizaje automático en comparación con un número aleatorio en el conjunto de prueba independiente (Fotografía cortesía de la RSNA).
Imagen: El diagrama de dispersión muestra la puntuación del modelo de aprendizaje automático en comparación con un número aleatorio en el conjunto de prueba independiente (Fotografía cortesía de la RSNA).
Los investigadores han entrenado una herramienta de aprendizaje automático para identificar lesiones de cáncer de mama de alto riesgo diagnosticadas con biopsia que tienen poca probabilidad de volverse cancerosas y, por lo tanto, no requieren una cirugía inmediata.
 
El modelo mostró una exactitud del 97% en sus predicciones y podría ayudar a reducir las cirugías de cáncer de mama innecesarias en un 33%. Las lesiones de alto riesgo tienen un mayor riesgo de convertirse en cáncer, pero muchas de estas lesiones se pueden seguir, de manera segura, usando imágenes, sin requerir cirugía.
 
El estudio fue publicado en línea en la edición de octubre de 2017 de la revista Radiology por investigadores del Instituto Tecnológico de Massachusetts (MIT, Boston, MA, EUA) y del Hospital General de Massachusetts (MGH; Boston, MA, EUA). La herramienta de aprendizaje automático permitió a los investigadores encontrar aquellas lesiones de alto riesgo que tienen un riesgo bajo de subir a cáncer.
 
El modelo tuvo en cuenta la edad de la paciente, la histología de la lesión y otros factores de riesgo estándar, pero también incluyó las palabras clave de los informes de patología de la biopsia. Los investigadores entrenaron el modelo utilizando pacientes con lesiones de alto riesgo comprobadas por biopsia. Después de entrenar el modelo en dos tercios de las lesiones de alto riesgo, los investigadores descubrieron que pudieron identificar el 97% de las lesiones que se volvieron cáncer. Los investigadores también encontraron que al usar el modelo podían ayudar a evitar casi un tercio de las cirugías de tumores benignos.
 
El autor del estudio, el radiólogo Manisha Bahl, MD, MPH, del MGH y de la Facultad de Medicina de Harvard, dijo: “Existen diferentes tipos de lesiones de alto riesgo. La mayoría de las instituciones recomiendan la escisión quirúrgica para lesiones de alto riesgo como la hiperplasia ductal atípica. para los que el riesgo de subir a cáncer es de aproximadamente el 20%. Para otros tipos de lesiones de alto riesgo, el riesgo de volverse cáncer varía bastante en la literatura y el manejo de la paciente, incluida la decisión sobre si extirpar o examinar la lesión, varía según las prácticas. Nuestro objetivo es aplicar la herramienta en la clínica”.
 
Digital X-Ray Detector Panel
Acuity G4
Radiology Software
DxWorks
New
Prostate Cancer MRI Analysis Tool
DynaCAD Urology
New
MRI Infusion Workstation
BeneFusion MRI Station

Print article

Canales

Radiografía

ver canal
Imagen: un estudio ha vinculado un mayor uso de radiografías de tórax con un diagnóstico más temprano del cáncer de pulmón y una mejor supervivencia (foto cortesía de 123RF)

Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas

El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más

RM

ver canal
Imagen: Comparación que muestra exploraciones 3T y 7T para el mismo participante (foto cortesía de P Simon Jones/University of Cambridge)

Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento

Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más

Medicina Nuclear

ver canal
Imágenes PET/TC con 68Ga-FZ-NR-1 e imágenes PET/TC y PET/RM con 18F-FDG en pacientes representativos con TNBC con nectina-4 positiva (foto cortesía del Journal of Nuclear Medicine)

Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo

El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más