Un algoritmo de IA identifica las radiografías de tórax anormales
Por el equipo editorial de MedImaging en español Actualizado el 09 Oct 2018 |

Imagen: Los algoritmos de IA coinciden con los radiólogos en la detección de patologías en las radiografías de tórax y en las TC (Fotografía cortesía de Qure.ai).
Un estudio de validación clínica confirma que un algoritmo controlado por inteligencia artificial (IA) puede diferenciar entre los exámenes normales y anormales de rayos X con una exactitud sin precedentes.
Investigadores de Columbia Asia Hospitals (Kuala Lumpur, Malasia) y Qure.ai (San Mateo, CA, EUA) capacitaron un sistema de aprendizaje profundo para identificar radiografías anormales utilizando 1,2 millones de exámenes de rayos X y sus correspondientes informes de radiología. Las anomalías específicas de rayos X incluyeron un ángulo costofrénico embotado, calcificación, cardiomegalia, cavidad, consolidación, fibrosis, agrandamiento del hilio, opacidad y derrame pleural, entre otros. El sistema se probó contra un análisis mayoritario de tres radiólogos, basado en un conjunto independiente, retrospectivamente recogido y sin identificación de 2.000 radiografías.
Los resultados mostraron que el sistema de IA de aprendizaje profundo fue altamente exacto en la detección de 15 anomalías en las radiografías de tórax en niveles cercanos a la identificación del radiólogo, con más del 90% de exactitud. El estudio de validación clínica de tórax se une a un estudio clínico previo que confirmó que el algoritmo de aprendizaje profundo, Qure.ai qER, puede identificar hemorragias, fracturas y otros traumas críticos en las tomografías computarizadas (TC) de cabeza, con más del 95% de exactitud. El estudio de tórax se publicó el 18 de julio de 2018 en la revista arXiv.org.
"La radiografía de tórax es una herramienta valiosa de evaluación de la salud y un componente vital de los programas de salud pública en todo el mundo. El enorme volumen producido cada año crea una demanda cada vez mayor para los radiólogos", dijo la coautora del estudio, Shalini Govil, MD, del grupo de radiología de Columbia Asia Hospitals. "Desafortunadamente, numerosas radiografías de tórax que muestran una patología significativa se dejan desatendidas en las pilas de trabajos pendientes debido a la falta de radiólogos disponibles para informarlos. A través de la semiautomatización del proceso de informe, la IA puede reducir significativamente la carga de trabajo de un radiólogo, mejorar la exactitud del informe, reducir el tiempo de respuesta y salvar vidas".
"Este es el conjunto de datos de entrenamiento más grande que se haya realizado hasta la fecha para una IA con rayos X en el tórax. También es el estudio de validación más grande hasta la fecha, medido contra 2.000 exámenes de rayos X, cada uno leído por tres radiólogos", dijo el autor principal, Prashant Warier, director ejecutivo y cofundador de Qure.ai. "Este es un momento emocionante para las tecnologías de aprendizaje profundo en medicina. A medida que estos sistemas aumentan en exactitud, también lo hará la viabilidad de usar el aprendizaje profundo para ampliar el alcance de la interpretación de los exámenes de rayos X del tórax, mejorar la eficiencia de los informes y salvar vidas".
El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático de IA basados en representaciones de datos, a diferencia de los algoritmos específicos de tareas. Implica algoritmos de redes neuronales que utilizan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada, formando una representación jerárquica.
Enlace relacionado:
Columbia Asia Hospitals
Qure.ai
Investigadores de Columbia Asia Hospitals (Kuala Lumpur, Malasia) y Qure.ai (San Mateo, CA, EUA) capacitaron un sistema de aprendizaje profundo para identificar radiografías anormales utilizando 1,2 millones de exámenes de rayos X y sus correspondientes informes de radiología. Las anomalías específicas de rayos X incluyeron un ángulo costofrénico embotado, calcificación, cardiomegalia, cavidad, consolidación, fibrosis, agrandamiento del hilio, opacidad y derrame pleural, entre otros. El sistema se probó contra un análisis mayoritario de tres radiólogos, basado en un conjunto independiente, retrospectivamente recogido y sin identificación de 2.000 radiografías.
Los resultados mostraron que el sistema de IA de aprendizaje profundo fue altamente exacto en la detección de 15 anomalías en las radiografías de tórax en niveles cercanos a la identificación del radiólogo, con más del 90% de exactitud. El estudio de validación clínica de tórax se une a un estudio clínico previo que confirmó que el algoritmo de aprendizaje profundo, Qure.ai qER, puede identificar hemorragias, fracturas y otros traumas críticos en las tomografías computarizadas (TC) de cabeza, con más del 95% de exactitud. El estudio de tórax se publicó el 18 de julio de 2018 en la revista arXiv.org.
"La radiografía de tórax es una herramienta valiosa de evaluación de la salud y un componente vital de los programas de salud pública en todo el mundo. El enorme volumen producido cada año crea una demanda cada vez mayor para los radiólogos", dijo la coautora del estudio, Shalini Govil, MD, del grupo de radiología de Columbia Asia Hospitals. "Desafortunadamente, numerosas radiografías de tórax que muestran una patología significativa se dejan desatendidas en las pilas de trabajos pendientes debido a la falta de radiólogos disponibles para informarlos. A través de la semiautomatización del proceso de informe, la IA puede reducir significativamente la carga de trabajo de un radiólogo, mejorar la exactitud del informe, reducir el tiempo de respuesta y salvar vidas".
"Este es el conjunto de datos de entrenamiento más grande que se haya realizado hasta la fecha para una IA con rayos X en el tórax. También es el estudio de validación más grande hasta la fecha, medido contra 2.000 exámenes de rayos X, cada uno leído por tres radiólogos", dijo el autor principal, Prashant Warier, director ejecutivo y cofundador de Qure.ai. "Este es un momento emocionante para las tecnologías de aprendizaje profundo en medicina. A medida que estos sistemas aumentan en exactitud, también lo hará la viabilidad de usar el aprendizaje profundo para ampliar el alcance de la interpretación de los exámenes de rayos X del tórax, mejorar la eficiencia de los informes y salvar vidas".
El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático de IA basados en representaciones de datos, a diferencia de los algoritmos específicos de tareas. Implica algoritmos de redes neuronales que utilizan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada, formando una representación jerárquica.
Enlace relacionado:
Columbia Asia Hospitals
Qure.ai
Últimas Imaginología General noticias
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral
La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... MásUltrasonido
ver canal
Técnica de microscopía basada en ultrasonido ayuda a diagnosticar enfermedades de pequeños vasos
La ecografía clínica, comúnmente utilizada en exámenes durante el embarazo, proporciona imágenes en tiempo real de las estructuras corporales. Es una de las técnicas... Más
Células inmunitarias activadas por ultrasonido destruyen células cancerosas
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en un tratamiento oncológico muy prometedor, especialmente en los cánceres hematológicos como la leucemia.... MásMedicina Nuclear
ver canal
Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación
La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más