La inteligencia artificial acelera el análisis de los rayos X de tórax
Por el equipo editorial de MedImaging en español Actualizado el 12 Feb 2019 |
Afirma un nuevo estudio: un sistema nuevo de inteligencia artificial (IA) puede reducir drásticamente el tiempo necesario para recibir la opinión de un radiólogo experto al respecto de radiografías de tórax anormales con hallazgos críticos.
Desarrollado por investigadores del King's College de Londres (KCL; Reino Unido), la Universidad de Warwick (Coventry, Reino Unido) y otras instituciones, el sistema de IA fue desarrollado utilizando 470.388 radiografías de tórax institucionales de adultos, totalmente anónimas, adquiridas entre 2007 y 2017. Los informes radiológicos adjuntos se preprocesaron utilizando un sistema de procesamiento de lenguaje natural interno (NLP) que modela el lenguaje radiológico, que analizó los informes de texto libre para priorizar cada radiografía como crítica, urgente, no urgente o normal.
Luego se formó un conjunto de dos redes neuronales convolucionales profundas (CNN, por sus siglas en inglés) para predecir la prioridad clínica de las apariencias radiológicas solamente. El desempeño del sistema en la priorización de radiografías se ensayó en una simulación utilizando un conjunto independiente de 15.887 radiografías. El desempeño de la predicción se evaluó con el área bajo la curva de características operativas del receptor, determinando adicionalmente la sensibilidad, especificidad, valor predictivo positivo (VPP) y valor predictivo negativo (VPN), con la intención de automatizar las radiografías de tórax de adultos en tiempo real basadas en la apariencia de las imágenes.
Los resultados revelaron que las radiografías de tórax normales (utilizadas para diagnosticar y monitorizar una amplia gama de afecciones que afectan los pulmones, el corazón, los huesos y los tejidos blandos) fueron detectadas por el sistema de IA con una sensibilidad del 71%, una especificidad del 95%, un VPP de 73%, y un VPN del 94%. La demora promedio en el reporte de los algoritmos se redujo de 11,2 a solo 2,7 días para los hallazgos críticos de imágenes, y de 7,6 a 4,1 días para los hallazgos de imágenes urgentes, en comparación con los datos históricos. El estudio fue publicado el 19 de enero de 2019 en la revista Radiology.
“Las crecientes demandas clínicas en los departamentos de radiología de todo el mundo han desafiado los modelos actuales de prestación de servicios. Ya no es posible que muchos departamentos de radiología con su personal actual informen todas las radiografías simples adquiridas de manera oportuna, lo que lleva a grandes atrasos de estudios no informados”, dijo el autor principal, el profesor Giovanni Montana, MD, de la Universidad de Warwick. “En el Reino Unido, se estima que, en cualquier momento, hay más de 300.000 radiografías que esperan el reporte por más de 30 días. Se podrían utilizar modelos alternativos de atención, como los algoritmos de visión artificial, para reducir en gran medida los retrasos en el proceso de identificación y la actuación de radiografías anormales, en particular para las radiografías de tórax”.
Las CNN utilizan una cascada de muchas capas de unidades de procesamiento no lineales para imágenes u otra extracción y transformación de características de datos, con cada capa sucesiva utilizando la salida de la capa anterior como entrada para formar una representación jerárquica.
Enlace relacionado:
King's College de Londres
Universidad de Warwick
Desarrollado por investigadores del King's College de Londres (KCL; Reino Unido), la Universidad de Warwick (Coventry, Reino Unido) y otras instituciones, el sistema de IA fue desarrollado utilizando 470.388 radiografías de tórax institucionales de adultos, totalmente anónimas, adquiridas entre 2007 y 2017. Los informes radiológicos adjuntos se preprocesaron utilizando un sistema de procesamiento de lenguaje natural interno (NLP) que modela el lenguaje radiológico, que analizó los informes de texto libre para priorizar cada radiografía como crítica, urgente, no urgente o normal.
Luego se formó un conjunto de dos redes neuronales convolucionales profundas (CNN, por sus siglas en inglés) para predecir la prioridad clínica de las apariencias radiológicas solamente. El desempeño del sistema en la priorización de radiografías se ensayó en una simulación utilizando un conjunto independiente de 15.887 radiografías. El desempeño de la predicción se evaluó con el área bajo la curva de características operativas del receptor, determinando adicionalmente la sensibilidad, especificidad, valor predictivo positivo (VPP) y valor predictivo negativo (VPN), con la intención de automatizar las radiografías de tórax de adultos en tiempo real basadas en la apariencia de las imágenes.
Los resultados revelaron que las radiografías de tórax normales (utilizadas para diagnosticar y monitorizar una amplia gama de afecciones que afectan los pulmones, el corazón, los huesos y los tejidos blandos) fueron detectadas por el sistema de IA con una sensibilidad del 71%, una especificidad del 95%, un VPP de 73%, y un VPN del 94%. La demora promedio en el reporte de los algoritmos se redujo de 11,2 a solo 2,7 días para los hallazgos críticos de imágenes, y de 7,6 a 4,1 días para los hallazgos de imágenes urgentes, en comparación con los datos históricos. El estudio fue publicado el 19 de enero de 2019 en la revista Radiology.
“Las crecientes demandas clínicas en los departamentos de radiología de todo el mundo han desafiado los modelos actuales de prestación de servicios. Ya no es posible que muchos departamentos de radiología con su personal actual informen todas las radiografías simples adquiridas de manera oportuna, lo que lleva a grandes atrasos de estudios no informados”, dijo el autor principal, el profesor Giovanni Montana, MD, de la Universidad de Warwick. “En el Reino Unido, se estima que, en cualquier momento, hay más de 300.000 radiografías que esperan el reporte por más de 30 días. Se podrían utilizar modelos alternativos de atención, como los algoritmos de visión artificial, para reducir en gran medida los retrasos en el proceso de identificación y la actuación de radiografías anormales, en particular para las radiografías de tórax”.
Las CNN utilizan una cascada de muchas capas de unidades de procesamiento no lineales para imágenes u otra extracción y transformación de características de datos, con cada capa sucesiva utilizando la salida de la capa anterior como entrada para formar una representación jerárquica.
Enlace relacionado:
King's College de Londres
Universidad de Warwick
Últimas Imaginología General noticias
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
- Modelo de aprendizaje profundo diagnostica con precisión la EPOC con una sola inhalación
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más
Tecnología de resonancia magnética impulsada por IA mejora el diagnóstico de Parkinson
Las investigaciones actuales muestran que la precisión del diagnóstico de la enfermedad de Parkinson suele oscilar entre el 55% y el 78% durante los primeros cinco años de evaluación.... MásUltrasonido
ver canal
Un pequeño robot magnético realiza escaneos 3D desde lo más profundo del cuerpo
El cáncer colorrectal es una de las principales causas de mortalidad por cáncer en todo el mundo. Sin embargo, si se detecta a tiempo, es altamente tratable. Ahora, una nueva técnica mínimamente invasiva... Más
Ultrasonido de alta resolución acelera el diagnóstico del cáncer de próstata
Cada año, se realizan aproximadamente un millón de biopsias de cáncer de próstata en Europa, con cifras similares en Estados Unidos y alrededor de 100.000 en Canadá.... Más
El primer ultrasonido inalámbrico, portátil y de cuerpo entero con un solo transductor PZT
Los dispositivos de ultrasonido desempeñan un papel vital en el campo de la medicina, utilizándose rutinariamente para examinar los tejidos y estructuras internas del cuerpo. Si bien los avances han mejorado... MásMedicina Nuclear
ver canal
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más
Técnica innovadora de imágenes PET ayuda a diagnosticar la neurodegeneración
Las enfermedades neurodegenerativas, como la esclerosis lateral amiotrófica (ELA) y la enfermedad de Alzheimer, suelen diagnosticarse solo después de que aparecen los síntomas físicos,... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más