Sistema nuevo de aprendizaje automático ayuda a los patólogos a diagnosticar el cáncer
Por el equipo editorial de MedImaging en español Actualizado el 26 Aug 2019 |
Investigadores de la Universidad de Washington (Seattle, WA, EUA) y la Universidad de California (Los Ángeles, CA; EUA) desarrollaron un sistema de inteligencia artificial (IA) que podría ayudar a los patólogos a leer biopsias con mayor exactitud y conducir a una mejor detección y diagnóstico del cáncer de mama. El nuevo algoritmo puede interpretar imágenes de biopsias de tejido mamario para diagnosticar el cáncer de mama con la misma exactitud o incluso mejor, que un patólogo experimentado, dependiendo de la tarea.
En 2015, un estudio de la facultad de medicina de la Universidad de Washington descubrió que los patólogos a menudo no estaban de acuerdo con la interpretación de las biopsias de mama, que se realizan en millones de mujeres cada año. El estudio reveló que se produjeron errores de diagnóstico en aproximadamente una de cada seis mujeres que tenían un tipo no invasivo de cáncer de mama llamado “carcinoma ductal in situ”. Además, se dieron diagnósticos incorrectos en aproximadamente la mitad de los casos de biopsia con células anormales que se asocian con un mayor riesgo de cáncer de mama, una afección llamada atipia de mama.
Los investigadores razonaron que la IA podría proporcionar lecturas más exactas consistentemente, ya que utiliza un gran conjunto de datos que hace posible que el sistema de aprendizaje automático reconozca patrones asociados con el cáncer que son difíciles de ver para los médicos. Después de estudiar las estrategias utilizadas por los patólogos durante las interpretaciones de biopsias de seno, el equipo desarrolló métodos de análisis de imágenes para abordar estos desafíos. Los investigadores introdujeron 240 imágenes de biopsias de seno en una computadora, entrenándola para reconocer patrones asociados con varios tipos de lesiones de mama, que van desde lesiones no cancerosas y atipias hasta carcinoma ductal in situ y cáncer de seno invasivo. Los diagnósticos correctos se determinaron por consenso entre tres patólogos expertos.
Luego, los investigadores probaron el sistema comparando sus lecturas con diagnósticos independientes realizados por 87 patólogos estadounidenses en ejercicio que interpretaron los mismos casos. El algoritmo estuvo cerca de funcionar tan bien como los médicos humanos para diferenciar el cáncer del no cáncer. Sin embargo, el algoritmo superó a los médicos en diferenciar el carcinoma ductal in situ de la atipia, diagnosticando correctamente las biopsias de cáncer de mama preinvasivas aproximadamente el 89% de las veces, en comparación con el 70% para los patólogos. Los investigadores ya comenzaron a trabajar en la capacitación del sistema para diagnosticar el cáncer de piel.
“Estos resultados son muy alentadores”, dijo la coautora del estudio, la Dra. Joann Elmore, profesora de medicina de la facultad de medicina David Geffen de la UCLA, que anteriormente era profesora de medicina interna en la facultad de medicina de la Universidad de Washington. “Hay poca exactitud entre los patólogos practicantes en los Estados Unidos cuando se trata del diagnóstico de atipias y carcinomas ductales in situ y el método automatizado basado en computadora es muy prometedor”.
Enlace relacionado:
Universidad de Washington
Universidad de California
En 2015, un estudio de la facultad de medicina de la Universidad de Washington descubrió que los patólogos a menudo no estaban de acuerdo con la interpretación de las biopsias de mama, que se realizan en millones de mujeres cada año. El estudio reveló que se produjeron errores de diagnóstico en aproximadamente una de cada seis mujeres que tenían un tipo no invasivo de cáncer de mama llamado “carcinoma ductal in situ”. Además, se dieron diagnósticos incorrectos en aproximadamente la mitad de los casos de biopsia con células anormales que se asocian con un mayor riesgo de cáncer de mama, una afección llamada atipia de mama.
Los investigadores razonaron que la IA podría proporcionar lecturas más exactas consistentemente, ya que utiliza un gran conjunto de datos que hace posible que el sistema de aprendizaje automático reconozca patrones asociados con el cáncer que son difíciles de ver para los médicos. Después de estudiar las estrategias utilizadas por los patólogos durante las interpretaciones de biopsias de seno, el equipo desarrolló métodos de análisis de imágenes para abordar estos desafíos. Los investigadores introdujeron 240 imágenes de biopsias de seno en una computadora, entrenándola para reconocer patrones asociados con varios tipos de lesiones de mama, que van desde lesiones no cancerosas y atipias hasta carcinoma ductal in situ y cáncer de seno invasivo. Los diagnósticos correctos se determinaron por consenso entre tres patólogos expertos.
Luego, los investigadores probaron el sistema comparando sus lecturas con diagnósticos independientes realizados por 87 patólogos estadounidenses en ejercicio que interpretaron los mismos casos. El algoritmo estuvo cerca de funcionar tan bien como los médicos humanos para diferenciar el cáncer del no cáncer. Sin embargo, el algoritmo superó a los médicos en diferenciar el carcinoma ductal in situ de la atipia, diagnosticando correctamente las biopsias de cáncer de mama preinvasivas aproximadamente el 89% de las veces, en comparación con el 70% para los patólogos. Los investigadores ya comenzaron a trabajar en la capacitación del sistema para diagnosticar el cáncer de piel.
“Estos resultados son muy alentadores”, dijo la coautora del estudio, la Dra. Joann Elmore, profesora de medicina de la facultad de medicina David Geffen de la UCLA, que anteriormente era profesora de medicina interna en la facultad de medicina de la Universidad de Washington. “Hay poca exactitud entre los patólogos practicantes en los Estados Unidos cuando se trata del diagnóstico de atipias y carcinomas ductales in situ y el método automatizado basado en computadora es muy prometedor”.
Enlace relacionado:
Universidad de Washington
Universidad de California
Últimas Industria noticias
- Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
- Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
- Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual
- Mindray se asocia con TeleRay para optimizar la entrega de ecografías
- Philips y Medtronic se asocian para el cuidado de accidentes cerebrovasculares
- Siemens y Medtronic forman alianza global para avanzar en tecnologías de imagenología para el cuidado de la columna vertebral
- Exhibiciones técnicas de la RSNA 2024 mostrarán los últimos avances en radiología
- Una colaboración innovadora mejorará la detección del accidente cerebrovascular isquémico
- Microsoft colabora con sistemas médicos académicos líderes para avanzar en la IA en imágenes médicas
- GE HealthCare adquiere el negocio de inteligencia artificial clínica de Intelligent Ultrasound Group
- Bayer y Rad AI colaboran para expandir el uso de soluciones operativas de radiología de vanguardia basadas en IA
- La empresa polaca de tecnología médica BrainScan planea expandirse extensamente en mercados extranjeros
- Bayer y Google se asocian en un nuevo producto de inteligencia artificial para radiólogos
- Samsung y Bracco firman nuevo acuerdo de tecnología de ultrasonido de diagnóstico
- IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
- Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
Canales
Radiografía
ver canal
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más
Tecnología de resonancia magnética impulsada por IA mejora el diagnóstico de Parkinson
Las investigaciones actuales muestran que la precisión del diagnóstico de la enfermedad de Parkinson suele oscilar entre el 55% y el 78% durante los primeros cinco años de evaluación.... MásUltrasonido
ver canal
Un pequeño robot magnético realiza escaneos 3D desde lo más profundo del cuerpo
El cáncer colorrectal es una de las principales causas de mortalidad por cáncer en todo el mundo. Sin embargo, si se detecta a tiempo, es altamente tratable. Ahora, una nueva técnica mínimamente invasiva... Más
Ultrasonido de alta resolución acelera el diagnóstico del cáncer de próstata
Cada año, se realizan aproximadamente un millón de biopsias de cáncer de próstata en Europa, con cifras similares en Estados Unidos y alrededor de 100.000 en Canadá.... Más
El primer ultrasonido inalámbrico, portátil y de cuerpo entero con un solo transductor PZT
Los dispositivos de ultrasonido desempeñan un papel vital en el campo de la medicina, utilizándose rutinariamente para examinar los tejidos y estructuras internas del cuerpo. Si bien los avances han mejorado... MásMedicina Nuclear
ver canal
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más
Técnica innovadora de imágenes PET ayuda a diagnosticar la neurodegeneración
Las enfermedades neurodegenerativas, como la esclerosis lateral amiotrófica (ELA) y la enfermedad de Alzheimer, suelen diagnosticarse solo después de que aparecen los síntomas físicos,... MásImaginología General
ver canal
Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
El cáncer de pulmón sigue siendo una de las enfermedades más difíciles de abordar, lo que hace que el diagnóstico temprano sea fundamental para un tratamiento eficaz.... Más
TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
Las infecciones pulmonares pueden poner en peligro la vida de los pacientes con sistemas inmunitarios debilitados, por lo que el diagnóstico oportuno es crucial. Si bien las tomografías computarizadas... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más