Inteligencia artificial predice con exactitud los efectos colaterales de la radioterapia
|
Por el equipo editorial de MedImaging en español Actualizado el 07 Oct 2019 |

Imagen: Una investigación nueva demostró que un modelo de computadora puede predecir los efectos secundarios asociados con la radioterapia (Fotografía cortesía de Technology Networks).
Investigadores del Centro de Cáncer MD Anderson de la Universidad de Texas (Houston, Texas, EUA), demostraron que un modelo de computadora sofisticado puede predecir con exactitud dos de los efectos secundarios más desafiantes asociados con la radioterapia para el cáncer de cabeza y cuello. Este enfoque de oncología de precisión tiene el potencial de identificar mejor a los pacientes que se podrían beneficiar de las intervenciones tempranas que podrían ayudar a prevenir una pérdida de peso significativa después del tratamiento o reducir la necesidad de colocar un tubo de alimentación.
El equipo de investigadores desarrolló modelos para analizar grandes conjuntos de datos combinados de tres fuentes: historias clínicas electrónicas (Epic), una herramienta de gráficos interna basada en la web (Brocade) y el sistema de registro/verificación (Mosaiq). Los datos incluyeron más de 700 variables clínicas y de tratamiento para los pacientes con cáncer de cabeza y cuello (75% hombres/25% mujeres, con una edad promedio de 62 años) que recibieron más de 2.000 sesiones de radioterapia (dosis media 60 Gy) en cinco sitios de práctica en el MD Anderson de 2016 a 2018.
Los investigadores utilizaron los modelos para predecir tres puntos finales: pérdida de peso significativa, colocación de sondas de alimentación y hospitalizaciones no planificadas. Los resultados del modelo de mejor desempeño fueron validados, a continuación, contra 225 tratamientos de radioterapia consecutivos posteriores. Los modelos con una tasa de rendimiento que cumplió un umbral de área predeterminado bajo la curva (AUC) de 0,70 o más se consideraron clínicamente válidos (una puntuación de AUC de 1,0 significaría que las predicciones del modelo eran 100% exactas, mientras que una puntuación de 0,0 significa que las predicciones nunca fueron exactas). Los modelos predijeron la probabilidad de una pérdida de peso significativa (AUC = 0,751) y la necesidad de colocar un tubo de alimentación (AUC = 0,755) con un alto grado de exactitud.
“Ser capaz de identificar qué pacientes tienen mayor riesgo, permitiría a los oncólogos radioterapeutas tomar medidas para prevenir o mitigar estos posibles efectos secundarios”, dijo Jay Reddy, MD, PhD, profesor asistente de radiooncología en el Centro de Cáncer MD Anderson de la Universidad de Texas y autor principal del estudio. “Si el paciente tiene un riesgo intermedio, y pudiese someterse a un tratamiento sin necesidad de una sonda de alimentación, podríamos tomar precauciones, como organizarlo con un nutricionista y proporcionarle suplementos nutricionales. Si sabemos que su riesgo de que le coloquen un tubo de alimentación es extremadamente alto, una probabilidad superior al 50% de que lo necesiten, podríamos colocarlo con anticipación para que no tengan que ser ingresados en el hospital después del tratamiento. Sabríamos vigilar más de cerca a ese paciente”.
El enfoque de aprendizaje automático no puede aislar el factor más predictivo o la combinación de factores que conducen a efectos secundarios negativos, pero puede proporcionar a los pacientes y a sus médicos una mejor comprensión de qué esperar durante el curso del tratamiento. Además de predecir la probabilidad de efectos secundarios, los modelos de aprendizaje automático podrían predecir qué planes de tratamiento serían más efectivos para los diferentes tipos de pacientes y permitir enfoques más personalizados para la radiooncología.
“El aprendizaje automático puede hacer que los médicos sean más eficientes y el tratamiento más seguro a través de la reducción del riesgo de error”, agregó el Dr. Reddy. “Tiene el potencial de influir en todos los aspectos de la oncología de radiación hoy en día, cualquier cosa en la que una computadora pueda ver datos y reconocer un patrón”.
Enlace relacionado:
Centro de Cáncer MD Anderson de la Universidad de Texas
El equipo de investigadores desarrolló modelos para analizar grandes conjuntos de datos combinados de tres fuentes: historias clínicas electrónicas (Epic), una herramienta de gráficos interna basada en la web (Brocade) y el sistema de registro/verificación (Mosaiq). Los datos incluyeron más de 700 variables clínicas y de tratamiento para los pacientes con cáncer de cabeza y cuello (75% hombres/25% mujeres, con una edad promedio de 62 años) que recibieron más de 2.000 sesiones de radioterapia (dosis media 60 Gy) en cinco sitios de práctica en el MD Anderson de 2016 a 2018.
Los investigadores utilizaron los modelos para predecir tres puntos finales: pérdida de peso significativa, colocación de sondas de alimentación y hospitalizaciones no planificadas. Los resultados del modelo de mejor desempeño fueron validados, a continuación, contra 225 tratamientos de radioterapia consecutivos posteriores. Los modelos con una tasa de rendimiento que cumplió un umbral de área predeterminado bajo la curva (AUC) de 0,70 o más se consideraron clínicamente válidos (una puntuación de AUC de 1,0 significaría que las predicciones del modelo eran 100% exactas, mientras que una puntuación de 0,0 significa que las predicciones nunca fueron exactas). Los modelos predijeron la probabilidad de una pérdida de peso significativa (AUC = 0,751) y la necesidad de colocar un tubo de alimentación (AUC = 0,755) con un alto grado de exactitud.
“Ser capaz de identificar qué pacientes tienen mayor riesgo, permitiría a los oncólogos radioterapeutas tomar medidas para prevenir o mitigar estos posibles efectos secundarios”, dijo Jay Reddy, MD, PhD, profesor asistente de radiooncología en el Centro de Cáncer MD Anderson de la Universidad de Texas y autor principal del estudio. “Si el paciente tiene un riesgo intermedio, y pudiese someterse a un tratamiento sin necesidad de una sonda de alimentación, podríamos tomar precauciones, como organizarlo con un nutricionista y proporcionarle suplementos nutricionales. Si sabemos que su riesgo de que le coloquen un tubo de alimentación es extremadamente alto, una probabilidad superior al 50% de que lo necesiten, podríamos colocarlo con anticipación para que no tengan que ser ingresados en el hospital después del tratamiento. Sabríamos vigilar más de cerca a ese paciente”.
El enfoque de aprendizaje automático no puede aislar el factor más predictivo o la combinación de factores que conducen a efectos secundarios negativos, pero puede proporcionar a los pacientes y a sus médicos una mejor comprensión de qué esperar durante el curso del tratamiento. Además de predecir la probabilidad de efectos secundarios, los modelos de aprendizaje automático podrían predecir qué planes de tratamiento serían más efectivos para los diferentes tipos de pacientes y permitir enfoques más personalizados para la radiooncología.
“El aprendizaje automático puede hacer que los médicos sean más eficientes y el tratamiento más seguro a través de la reducción del riesgo de error”, agregó el Dr. Reddy. “Tiene el potencial de influir en todos los aspectos de la oncología de radiación hoy en día, cualquier cosa en la que una computadora pueda ver datos y reconocer un patrón”.
Enlace relacionado:
Centro de Cáncer MD Anderson de la Universidad de Texas
Últimas Industria noticias
- Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
- Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
- Bracco Diagnostics y ColoWatch se asocian para ampliar la disponibilidad de pruebas de detección de CCR mediante colonoscopia virtual
- Mindray se asocia con TeleRay para optimizar la entrega de ecografías
- Philips y Medtronic se asocian para el cuidado de accidentes cerebrovasculares
- Siemens y Medtronic forman alianza global para avanzar en tecnologías de imagenología para el cuidado de la columna vertebral
- Exhibiciones técnicas de la RSNA 2024 mostrarán los últimos avances en radiología
- Una colaboración innovadora mejorará la detección del accidente cerebrovascular isquémico
- Microsoft colabora con sistemas médicos académicos líderes para avanzar en la IA en imágenes médicas
- GE HealthCare adquiere el negocio de inteligencia artificial clínica de Intelligent Ultrasound Group
- Bayer y Rad AI colaboran para expandir el uso de soluciones operativas de radiología de vanguardia basadas en IA
- La empresa polaca de tecnología médica BrainScan planea expandirse extensamente en mercados extranjeros
- Bayer y Google se asocian en un nuevo producto de inteligencia artificial para radiólogos
- Samsung y Bracco firman nuevo acuerdo de tecnología de ultrasonido de diagnóstico
- IBA adquiere Radcal para ampliar oferta de garantía de calidad de imágenes médicas
- Sociedades internacionales sugieren consideraciones clave para herramientas IA para radiología
Canales
Radiografía
ver canal
Avance en rayos X captura tres tipos de contraste de imagen en una sola toma
La detección de cáncer en etapas tempranas o cambios sutiles en las capas profundas de los tejidos ha sido un desafío para los sistemas de rayos X convencionales, que dependen únicamente... Más
La IA genera radiografías futuras de rodilla para predecir el riesgo de progresión de la osteoartritis
La osteoartritis, una enfermedad articular degenerativa que afecta a más de 500 millones de personas en todo el mundo, es la principal causa de discapacidad en adultos mayores. Las herramientas... Más
Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres
Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... MásRM
ver canal
Nuevo enfoque de imagen para mejorar el tratamiento de lesiones de la médula espinal
La disfunción vascular en la médula espinal contribuye a múltiples afecciones neurológicas, como lesiones traumáticas y mielopatía cervical degenerativa, donde... Más
Modelo asistido por IA mejora las imágenes de resonancia magnética cardíaca
Una resonancia magnética cardíaca puede revelar información crucial sobre la función cardíaca y cualquier anomalía, pero las exploraciones tradicionales tardan... MásUltrasonido
ver canal
Sistema de ultrasonido portátil permitirá la monitorización de enfermedades en tiempo real
Las enfermedades crónicas como la hipertensión y la insuficiencia cardíaca requieren una monitorización estrecha; sin embargo, en la actualidad la obtención de imágenes... Más
Técnica de ultrasonido visualiza vasos sanguíneos profundos en 3D sin agentes de contraste
La producción de imágenes 3D nítidas de vasos sanguíneos profundos ha sido difícil durante mucho tiempo sin recurrir a medios de contraste, tomografías computarizadas... MásMedicina Nuclear
ver canal
Las imágenes PET de la inflamación predicen la recuperación y guían la terapia tras un infarto cardíaco
El infarto agudo de miocardio puede provocar daño cardíaco permanente; sin embargo, los médicos aún carecen de herramientas fiables para identificar qué pacientes re... Más
Un enfoque radioteranóstico detecta, elimina y reprograma cánceres agresivos
Los cánceres agresivos como el osteosarcoma y el glioblastoma suelen resistir las terapias estándar, prosperar en entornos tumorales hostiles y reaparecer a pesar de la cirugía, la... MásImaginología General
ver canal
Enfoque de escaneo 3D permite una cirugía cerebral ultraprecisa
La navegación precisa es fundamental en neurocirugía, pero incluso pequeños errores de alineación pueden afectar los resultados cuando se opera en zonas profundas del cerebro.... Más
Herramienta de IA mejora el proceso de imágenes médicas en un 90%
La identificación precisa de distintas regiones dentro de estudios médicos, un proceso conocido como segmentación de imágenes médicas, es fundamental para el diagnóstico,... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más







