IA rivaliza con los radiólogos en la detección de la hemorragia intracraneal
Por el equipo editorial de MedImaging en español Actualizado el 11 Nov 2019 |

Imagen: Examen cerebral típico que un radiólogo ve (I), y una hemorragia subaracnoidea resaltada por PatchFCN (D) (Fotografía cortesía de la UCSF).
Un estudio nuevo muestra que las redes neuronales convolucionales de inteligencia artificial (IA) (RNC) pueden alcanzar niveles de exactitud comparables a los de radiólogos altamente capacitados.
Desarrollado por investigadores de la Universidad de California en San Francisco (UCSF; EUA) y la Universidad de California Berkeley (UCB; EUA), la red totalmente convolucional basada en parches (PatchFCN) funciona dividiendo una tomografía computarizada (TC) en parches más pequeños para mejorar la tasa de detección de las hemorragias intracraneales agudas (HIC) en las tomografías computarizadas de la cabeza. Según los investigadores, la segmentación ofrece muchas ventajas, incluida una mejor interpretación y métricas cuantificables para el pronóstico de la enfermedad. En términos simples, la hemorragia se define así como “cosas” (por ejemplo, agua) en lugar de “cosas” (por ejemplo, un automóvil), debido a su naturaleza fluida.
Desarrollado utilizando 4.396 tomografías computarizadas de la cabeza como modelo de aprendizaje, se comparó el desempeño de PatchFCN con el de cuatro radiólogos certificados por la Junta Americana de Radiología (ABR, por sus siglas en inglés) en un conjunto de pruebas de 200 TC de cabeza seleccionadas al azar. El modelo demostró una exactitud promedio del 99% para detectar hemorragias, la exactitud de clasificación más alta hasta la fecha. Además, PatchFCN proporcionó un rastreo detallado de cada hemorragia, destacando las anomalías directamente en la propia TC, ayudando a los neurocirujanos a confirmar visualmente las ubicaciones de las hemorragias y a juzgar la necesidad y el enfoque para la intervención quirúrgica. El estudio fue publicado el 21 de octubre de 2019 en la revista PNAS.
“Utilizando un enfoque sólido de supervisión a nivel de píxeles y un conjunto de datos de entrenamiento relativamente pequeño, demostramos una red de extremo a extremo que realiza la clasificación y segmentación conjunta. Demuestra la exactitud de clasificación más alta hasta la fecha, en comparación con otros enfoques de aprendizaje profundo, y también localiza simultáneamente estas anormalidades”, concluyó el autor principal, Weicheng Kuo, PhD, de la UCB. “Demostramos que identifica muchas anormalidades pasadas por alto por los expertos. Además, demostramos resultados prometedores para la segmentación de hemorragias multiclase, al tiempo que preservamos la detección exacta a nivel de examen”.
El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático de IA basados en representaciones de datos de aprendizaje, en oposición a los algoritmos específicos de la tarea. Involucra algoritmos RNC que usan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción, conversión y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.
Enlace relacionado:
Universidad de California en San Francisco
Universidad de California Berkeley
Desarrollado por investigadores de la Universidad de California en San Francisco (UCSF; EUA) y la Universidad de California Berkeley (UCB; EUA), la red totalmente convolucional basada en parches (PatchFCN) funciona dividiendo una tomografía computarizada (TC) en parches más pequeños para mejorar la tasa de detección de las hemorragias intracraneales agudas (HIC) en las tomografías computarizadas de la cabeza. Según los investigadores, la segmentación ofrece muchas ventajas, incluida una mejor interpretación y métricas cuantificables para el pronóstico de la enfermedad. En términos simples, la hemorragia se define así como “cosas” (por ejemplo, agua) en lugar de “cosas” (por ejemplo, un automóvil), debido a su naturaleza fluida.
Desarrollado utilizando 4.396 tomografías computarizadas de la cabeza como modelo de aprendizaje, se comparó el desempeño de PatchFCN con el de cuatro radiólogos certificados por la Junta Americana de Radiología (ABR, por sus siglas en inglés) en un conjunto de pruebas de 200 TC de cabeza seleccionadas al azar. El modelo demostró una exactitud promedio del 99% para detectar hemorragias, la exactitud de clasificación más alta hasta la fecha. Además, PatchFCN proporcionó un rastreo detallado de cada hemorragia, destacando las anomalías directamente en la propia TC, ayudando a los neurocirujanos a confirmar visualmente las ubicaciones de las hemorragias y a juzgar la necesidad y el enfoque para la intervención quirúrgica. El estudio fue publicado el 21 de octubre de 2019 en la revista PNAS.
“Utilizando un enfoque sólido de supervisión a nivel de píxeles y un conjunto de datos de entrenamiento relativamente pequeño, demostramos una red de extremo a extremo que realiza la clasificación y segmentación conjunta. Demuestra la exactitud de clasificación más alta hasta la fecha, en comparación con otros enfoques de aprendizaje profundo, y también localiza simultáneamente estas anormalidades”, concluyó el autor principal, Weicheng Kuo, PhD, de la UCB. “Demostramos que identifica muchas anormalidades pasadas por alto por los expertos. Además, demostramos resultados prometedores para la segmentación de hemorragias multiclase, al tiempo que preservamos la detección exacta a nivel de examen”.
El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático de IA basados en representaciones de datos de aprendizaje, en oposición a los algoritmos específicos de la tarea. Involucra algoritmos RNC que usan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción, conversión y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.
Enlace relacionado:
Universidad de California en San Francisco
Universidad de California Berkeley
Últimas Imaginología General noticias
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más
Tecnología de resonancia magnética impulsada por IA mejora el diagnóstico de Parkinson
Las investigaciones actuales muestran que la precisión del diagnóstico de la enfermedad de Parkinson suele oscilar entre el 55% y el 78% durante los primeros cinco años de evaluación.... MásUltrasonido
ver canal
Un pequeño robot magnético realiza escaneos 3D desde lo más profundo del cuerpo
El cáncer colorrectal es una de las principales causas de mortalidad por cáncer en todo el mundo. Sin embargo, si se detecta a tiempo, es altamente tratable. Ahora, una nueva técnica mínimamente invasiva... Más
Ultrasonido de alta resolución acelera el diagnóstico del cáncer de próstata
Cada año, se realizan aproximadamente un millón de biopsias de cáncer de próstata en Europa, con cifras similares en Estados Unidos y alrededor de 100.000 en Canadá.... Más
El primer ultrasonido inalámbrico, portátil y de cuerpo entero con un solo transductor PZT
Los dispositivos de ultrasonido desempeñan un papel vital en el campo de la medicina, utilizándose rutinariamente para examinar los tejidos y estructuras internas del cuerpo. Si bien los avances han mejorado... MásMedicina Nuclear
ver canal
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más
Técnica innovadora de imágenes PET ayuda a diagnosticar la neurodegeneración
Las enfermedades neurodegenerativas, como la esclerosis lateral amiotrófica (ELA) y la enfermedad de Alzheimer, suelen diagnosticarse solo después de que aparecen los síntomas físicos,... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más