Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

MedImaging

Deascargar La Aplicación Móvil
Noticias Recientes Radiografía RM Ultrasonido Medicina Nuclear Imaginología General TI en Imaginología Industria

Sistema de IA mejora la exactitud de las mamografías para la detección del cáncer

Por el equipo editorial de MedImaging en español
Actualizado el 20 Jan 2020
Print article
Imagen: La IA detecta el cáncer en mamografías de rutina en las que seis radiólogos no pudieron (Fotografía cortesía de la Universidad Northwestern)
Imagen: La IA detecta el cáncer en mamografías de rutina en las que seis radiólogos no pudieron (Fotografía cortesía de la Universidad Northwestern)
Según un estudio nuevo, un programa de inteligencia artificial (IA) es mejor que los radiólogos experimentados para detectar el cáncer de seno en las mamografías.

Desarrollado por Google Health (Palo Alto, CA, EUA), el Colegio Imperial de Londres (Imperial; Reino Unido), DeepMind (Londres, Reino Unido) y otras instituciones, el algoritmo de IA se entrenó primero para detectar cánceres de mama en mamografías de más de 76.000 mujeres en el Reino Unido y alrededor de 15.000 mujeres en los Estados Unidos. Luego se le pidió que evaluara 25.856 mamografías nuevas de mujeres en el Reino Unido y 3.097 de mujeres en los Estados Unidos, que tenían cáncer de seno confirmado por biopsia o ningún signo de cáncer durante el seguimiento al menos un año después.

Los resultados mostraron que el sistema de IA podía detectar el cáncer con un grado de exactitud similar al de los radiólogos, pero también redujo el número de errores, reduciendo los falsos positivos en un 5,7% en el grupo de EUA y en un 1,2% en el grupo del Reino Unido, y los falsos negativos se redujeron en un 9,4% en el grupo de EUA y en un 2,7% en el grupo del Reino Unido. En un estudio independiente de seis radiólogos, el sistema de IA superó a todos los lectores humanos en un margen absoluto del 11,5%. En una simulación en la que el sistema de inteligencia artificial utilizó el proceso de doble lectura utilizado en el Reino Unido, mantuvo un desempeño no inferior, reduciendo la carga de trabajo del segundo lector en un 88%. El estudio fue publicado el 1 de enero de 2020 en la revista Nature.

“Los resultados sugieren que la IA podría mejorar la exactitud de los programas de detección en los Estados Unidos y mantener un nivel de calidad similar en el Reino Unido, con la tecnología utilizada para ayudar o reemplazar a un segundo radiólogo”, dijo el coautor del estudio, Dominic King, MD, PhD, de Google Health Londres. “Se requieren más pruebas, validación clínica y aprobaciones regulatorias antes de que esto pueda comenzar a marcar la diferencia para los pacientes, pero estamos comprometidos a trabajar con nuestros socios para lograr este objetivo”.

DeepMind es una compañía británica de inteligencia artificial fundada en septiembre de 2010 que creó una red neuronal que aprende a jugar videojuegos de manera similar a la de los humanos, así como una red neuronal que puede acceder tanto a una memoria externa como una máquina de Turing convencional, con el resultado de una computadora que imita la memoria a corto plazo del cerebro humano; fue adquirida por Google en 2014.

Enlace relacionado:
Google Health
Colegio Imperial de Londres
DeepMind

Multi-Use Ultrasound Table
Clinton
3T MRI Scanner
MAGNETOM Cima.X
Ultrasonic Pocket Doppler
SD1
X-Ray Illuminator
X-Ray Viewbox Illuminators

Print article

Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

RM

ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más