Sistema de IA mejora la exactitud de las mamografías para la detección del cáncer
|
Por el equipo editorial de MedImaging en español Actualizado el 20 Jan 2020 |

Imagen: La IA detecta el cáncer en mamografías de rutina en las que seis radiólogos no pudieron (Fotografía cortesía de la Universidad Northwestern)
Según un estudio nuevo, un programa de inteligencia artificial (IA) es mejor que los radiólogos experimentados para detectar el cáncer de seno en las mamografías.
Desarrollado por Google Health (Palo Alto, CA, EUA), el Colegio Imperial de Londres (Imperial; Reino Unido), DeepMind (Londres, Reino Unido) y otras instituciones, el algoritmo de IA se entrenó primero para detectar cánceres de mama en mamografías de más de 76.000 mujeres en el Reino Unido y alrededor de 15.000 mujeres en los Estados Unidos. Luego se le pidió que evaluara 25.856 mamografías nuevas de mujeres en el Reino Unido y 3.097 de mujeres en los Estados Unidos, que tenían cáncer de seno confirmado por biopsia o ningún signo de cáncer durante el seguimiento al menos un año después.
Los resultados mostraron que el sistema de IA podía detectar el cáncer con un grado de exactitud similar al de los radiólogos, pero también redujo el número de errores, reduciendo los falsos positivos en un 5,7% en el grupo de EUA y en un 1,2% en el grupo del Reino Unido, y los falsos negativos se redujeron en un 9,4% en el grupo de EUA y en un 2,7% en el grupo del Reino Unido. En un estudio independiente de seis radiólogos, el sistema de IA superó a todos los lectores humanos en un margen absoluto del 11,5%. En una simulación en la que el sistema de inteligencia artificial utilizó el proceso de doble lectura utilizado en el Reino Unido, mantuvo un desempeño no inferior, reduciendo la carga de trabajo del segundo lector en un 88%. El estudio fue publicado el 1 de enero de 2020 en la revista Nature.
“Los resultados sugieren que la IA podría mejorar la exactitud de los programas de detección en los Estados Unidos y mantener un nivel de calidad similar en el Reino Unido, con la tecnología utilizada para ayudar o reemplazar a un segundo radiólogo”, dijo el coautor del estudio, Dominic King, MD, PhD, de Google Health Londres. “Se requieren más pruebas, validación clínica y aprobaciones regulatorias antes de que esto pueda comenzar a marcar la diferencia para los pacientes, pero estamos comprometidos a trabajar con nuestros socios para lograr este objetivo”.
DeepMind es una compañía británica de inteligencia artificial fundada en septiembre de 2010 que creó una red neuronal que aprende a jugar videojuegos de manera similar a la de los humanos, así como una red neuronal que puede acceder tanto a una memoria externa como una máquina de Turing convencional, con el resultado de una computadora que imita la memoria a corto plazo del cerebro humano; fue adquirida por Google en 2014.
Enlace relacionado:
Google Health
Colegio Imperial de Londres
DeepMind
Desarrollado por Google Health (Palo Alto, CA, EUA), el Colegio Imperial de Londres (Imperial; Reino Unido), DeepMind (Londres, Reino Unido) y otras instituciones, el algoritmo de IA se entrenó primero para detectar cánceres de mama en mamografías de más de 76.000 mujeres en el Reino Unido y alrededor de 15.000 mujeres en los Estados Unidos. Luego se le pidió que evaluara 25.856 mamografías nuevas de mujeres en el Reino Unido y 3.097 de mujeres en los Estados Unidos, que tenían cáncer de seno confirmado por biopsia o ningún signo de cáncer durante el seguimiento al menos un año después.
Los resultados mostraron que el sistema de IA podía detectar el cáncer con un grado de exactitud similar al de los radiólogos, pero también redujo el número de errores, reduciendo los falsos positivos en un 5,7% en el grupo de EUA y en un 1,2% en el grupo del Reino Unido, y los falsos negativos se redujeron en un 9,4% en el grupo de EUA y en un 2,7% en el grupo del Reino Unido. En un estudio independiente de seis radiólogos, el sistema de IA superó a todos los lectores humanos en un margen absoluto del 11,5%. En una simulación en la que el sistema de inteligencia artificial utilizó el proceso de doble lectura utilizado en el Reino Unido, mantuvo un desempeño no inferior, reduciendo la carga de trabajo del segundo lector en un 88%. El estudio fue publicado el 1 de enero de 2020 en la revista Nature.
“Los resultados sugieren que la IA podría mejorar la exactitud de los programas de detección en los Estados Unidos y mantener un nivel de calidad similar en el Reino Unido, con la tecnología utilizada para ayudar o reemplazar a un segundo radiólogo”, dijo el coautor del estudio, Dominic King, MD, PhD, de Google Health Londres. “Se requieren más pruebas, validación clínica y aprobaciones regulatorias antes de que esto pueda comenzar a marcar la diferencia para los pacientes, pero estamos comprometidos a trabajar con nuestros socios para lograr este objetivo”.
DeepMind es una compañía británica de inteligencia artificial fundada en septiembre de 2010 que creó una red neuronal que aprende a jugar videojuegos de manera similar a la de los humanos, así como una red neuronal que puede acceder tanto a una memoria externa como una máquina de Turing convencional, con el resultado de una computadora que imita la memoria a corto plazo del cerebro humano; fue adquirida por Google en 2014.
Enlace relacionado:
Google Health
Colegio Imperial de Londres
DeepMind
Últimas Imaginología General noticias
- Herramienta de IA ofrece pronóstico para pacientes con cáncer de cabeza y cuello
- Nuevo sistema de imágenes 3D soluciona limitaciones de RM, TC y ultrasonido
- Herramienta basada en IA predice eventos cardiovasculares futuros en pacientes con angina
- Una herramienta basada en IA acelera la detección del cáncer de riñón
- Nuevo algoritmo acelera drásticamente los análisis para la detección del ictus
- Enfoque de escaneo 3D permite una cirugía cerebral ultraprecisa
- Herramienta de IA mejora el proceso de imágenes médicas en un 90%
- Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste
- Algoritmo de IA predice con precisión la metástasis del cáncer de páncreas mediante imágenes rutinarias de TC
- Avanzada solución de angio-TC ofrece nuevas posibilidades terapéuticas
- La ampliación de TC detecta coágulos sanguíneos ocultos en pacientes con ictus
- Modelo de IA segmenta con precisión tumores hepáticos a partir de tomografías computarizadas
- Nuevo indicador basado en TC ayuda a predecir hemorragia posparto potencialmente mortal
- La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon
- Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas
- Análisis de TC basado en IA predice daño renal en etapa temprana causado por tratamientos contra el cáncer
Canales
Radiografía
ver canal
Las mamografías de rutina podrían predecir futuras enfermedades cardiovasculares en las mujeres
Las mamografías se utilizan ampliamente para el cribado del cáncer de mama, pero también pueden contener indicios pasados por alto sobre la salud cardiovascular. Los depósitos... Más
La IA detecta signos tempranos de envejecimiento a partir de radiografías de tórax
La edad cronológica no siempre refleja la velocidad real del envejecimiento corporal, y las pruebas actuales de edad biológica suelen basarse en marcadores genéticos que pueden pasar... Más
Avance en rayos X captura tres tipos de contraste de imagen en una sola toma
La detección de cáncer en etapas tempranas o cambios sutiles en las capas profundas de los tejidos ha sido un desafío para los sistemas de rayos X convencionales, que dependen únicamente... Más
La IA genera radiografías futuras de rodilla para predecir el riesgo de progresión de la osteoartritis
La osteoartritis, una enfermedad articular degenerativa que afecta a más de 500 millones de personas en todo el mundo, es la principal causa de discapacidad en adultos mayores. Las herramientas... MásRM
ver canal
Las RM revelan patrones característicos de actividad cerebral para predecir la recuperación tras una LCT
La recuperación tras una lesión cerebral traumática (LCT) varía ampliamente: algunos pacientes recuperan la función completa, mientras que otros quedan con discapacidades... Más
Nuevo enfoque de imagen para mejorar el tratamiento de lesiones de la médula espinal
La disfunción vascular en la médula espinal contribuye a múltiples afecciones neurológicas, como lesiones traumáticas y mielopatía cervical degenerativa, donde... MásUltrasonido
ver canal
Nueva técnica de imagen produce imágenes 3D en color de tejidos blandos y vasos sanguíneos
Las herramientas de imagen médica a menudo obligan a los profesionales clínicos a elegir entre velocidad, detalle estructural y conocimiento funcional. La ecografía es rápida... Más
Nuevo sensor portátil de ultrasonido ofrece detección precoz del cáncer de mama
La detección del cáncer de mama depende en gran medida de las mamografías anuales, pero los tumores agresivos pueden desarrollarse entre un estudio y otro, representando hasta el 30... MásMedicina Nuclear
ver canal
Marcador molecular radiofármaco mejora la selección de terapias para el cáncer de vejiga
Las terapias dirigidas contra el cáncer solo funcionan cuando las células tumorales expresan las estructuras moleculares específicas que están diseñadas para atacar.... Más
Las imágenes PET de la inflamación predicen la recuperación y guían la terapia tras un infarto cardíaco
El infarto agudo de miocardio puede provocar daño cardíaco permanente; sin embargo, los médicos aún carecen de herramientas fiables para identificar qué pacientes re... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más







