IA aplicada a los rayos X de tórax identifica la colocación inadecuada de los tubos de respiración
Por el equipo editorial de MedImaging en español Actualizado el 01 Feb 2022 |

Imagen: El software de IA identifica la colocación correcta de los tubos de respiración (Fotografía cortesía de Qure.ai)
Un algoritmo de inteligencia artificial (IA) mejora la gestión de cuidados intensivos al evaluar la colocación del tubo de respiración (TR) endotraqueal y de traqueotomía.
El software de análisis de imágenes independiente Qure.ai (Mumbai, India), qXR-BT fue diseñado para analizar y determinar la posición de la punta de un TR en relación con la carina mediante la generación de una imagen de rayos X de tórax digital secundaria. Luego automatiza las mediciones y proporciona al médico tratante un informe sobre la exactitud de la posición del tubo en menos de un minuto. Esto permite a los médicos identificar la posición correcta y determinar si se requiere atención adicional. El algoritmo es independiente del proveedor y funciona en máquinas de rayos X portátiles y estacionarias.
Las radiografías de tórax se envían a qXR-BT por medio de funciones de transmisión dentro del sistema de archivo y comunicación de imágenes (PACS) del usuario. Una vez finalizado el procesamiento, qXR-BT devuelve los resultados al PACS del usuario u otro sistema de software de radiología o base de datos especificado por el usuario en una salida PDF que contiene imágenes de vista previa que muestran estructuras segmentadas, delineadas con un informe textual que describe las estructuras detectadas. El informe de texto se limita a la presencia o ausencia de los tubos de respiración y la carina detectada por el software.
Además, qXR-BT genera un informe de imágenes digitales y comunicaciones en medicina (DICOM), que consta de una sola serie DICOM adicional completa para cada escaneo de entrada que contiene superposiciones etiquetadas que indican la ubicación y el alcance de las estructuras segmentables, adecuado para ver en el PACS o visor de radiología. qXR-BT utiliza redes neuronales convolucionales (CNN) previamente entrenadas para procesar las imágenes.
“Se espera que qXR-BT se convierta en una característica estándar de cualquier marco de atención crítica, brindando a los residentes y médicos jóvenes más confianza para medir de manera confiable la colocación del tubo de respiración en pacientes intubados”, dijo Prashant Warier, director ejecutivo y fundador de Qure.ai. “Especialmente a raíz de la pandemia de COVID-19 y la necesidad de ventilación mecánica en los pacientes afectados, la necesidad de asistencia inmediata para una fuerza laboral de atención médica sobrecargada es primordial”.
Los estudios han demostrado que hasta el 25 % de los pacientes intubados fuera del quirófano tienen tubos endotraqueales mal colocados, lo que puede provocar complicaciones graves como hiperinflación, neumotórax, paro cardíaco y muerte. Además, hasta el 45 % de los pacientes de la UCI, incluido el 5-15 % de los pacientes con COVID-19, requieren vigilancia en cuidados intensivos e intubación para soporte ventilatorio.
Enlace relacionado:
Qure.ai
El software de análisis de imágenes independiente Qure.ai (Mumbai, India), qXR-BT fue diseñado para analizar y determinar la posición de la punta de un TR en relación con la carina mediante la generación de una imagen de rayos X de tórax digital secundaria. Luego automatiza las mediciones y proporciona al médico tratante un informe sobre la exactitud de la posición del tubo en menos de un minuto. Esto permite a los médicos identificar la posición correcta y determinar si se requiere atención adicional. El algoritmo es independiente del proveedor y funciona en máquinas de rayos X portátiles y estacionarias.
Las radiografías de tórax se envían a qXR-BT por medio de funciones de transmisión dentro del sistema de archivo y comunicación de imágenes (PACS) del usuario. Una vez finalizado el procesamiento, qXR-BT devuelve los resultados al PACS del usuario u otro sistema de software de radiología o base de datos especificado por el usuario en una salida PDF que contiene imágenes de vista previa que muestran estructuras segmentadas, delineadas con un informe textual que describe las estructuras detectadas. El informe de texto se limita a la presencia o ausencia de los tubos de respiración y la carina detectada por el software.
Además, qXR-BT genera un informe de imágenes digitales y comunicaciones en medicina (DICOM), que consta de una sola serie DICOM adicional completa para cada escaneo de entrada que contiene superposiciones etiquetadas que indican la ubicación y el alcance de las estructuras segmentables, adecuado para ver en el PACS o visor de radiología. qXR-BT utiliza redes neuronales convolucionales (CNN) previamente entrenadas para procesar las imágenes.
“Se espera que qXR-BT se convierta en una característica estándar de cualquier marco de atención crítica, brindando a los residentes y médicos jóvenes más confianza para medir de manera confiable la colocación del tubo de respiración en pacientes intubados”, dijo Prashant Warier, director ejecutivo y fundador de Qure.ai. “Especialmente a raíz de la pandemia de COVID-19 y la necesidad de ventilación mecánica en los pacientes afectados, la necesidad de asistencia inmediata para una fuerza laboral de atención médica sobrecargada es primordial”.
Los estudios han demostrado que hasta el 25 % de los pacientes intubados fuera del quirófano tienen tubos endotraqueales mal colocados, lo que puede provocar complicaciones graves como hiperinflación, neumotórax, paro cardíaco y muerte. Además, hasta el 45 % de los pacientes de la UCI, incluido el 5-15 % de los pacientes con COVID-19, requieren vigilancia en cuidados intensivos e intubación para soporte ventilatorio.
Enlace relacionado:
Qure.ai
Últimas Radiografía noticias
- Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
- Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
- Las mamografías impulsadas por IA predicen el riesgo cardiovascular
- Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
- La mamografía impulsada por IA mejora la detección de cáncer en entornos de lectura única
- Los detectores de conteo de fotones prometen imágenes rápidas de rayos X en color
- La IA puede señalar mamografías para una resonancia magnética suplementaria
- Imágenes 3D por TC a partir de una sola proyección de rayos X reducen la exposición a la radiación
- Método de IA predice el riesgo de cáncer de mama al analizar múltiples mamografías
- Sensores de rayos X orgánicos imprimibles podrían transformar el tratamiento del cáncer
- Detector altamente sensible y plegable hace que la radiografía sea más segura
- Nueva tecnología de detección de cáncer de mama podría ofrecer una alternativa superior a la mamografía
- Inteligencia artificial predice con precisión el cáncer de mama años antes del diagnóstico
- Radiografía de tórax con IA detecta nódulos pulmonares tres años antes de los síntomas del cáncer de pulmón
- Modelo de IA identifica fracturas por compresión vertebral en radiografías de tórax
- La mamografía 3D avanzada puede detectar más cánceres de mama
Canales
RM
ver canal
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más
Tecnología de resonancia magnética impulsada por IA mejora el diagnóstico de Parkinson
Las investigaciones actuales muestran que la precisión del diagnóstico de la enfermedad de Parkinson suele oscilar entre el 55% y el 78% durante los primeros cinco años de evaluación.... MásUltrasonido
ver canal
Un pequeño robot magnético realiza escaneos 3D desde lo más profundo del cuerpo
El cáncer colorrectal es una de las principales causas de mortalidad por cáncer en todo el mundo. Sin embargo, si se detecta a tiempo, es altamente tratable. Ahora, una nueva técnica mínimamente invasiva... Más
Ultrasonido de alta resolución acelera el diagnóstico del cáncer de próstata
Cada año, se realizan aproximadamente un millón de biopsias de cáncer de próstata en Europa, con cifras similares en Estados Unidos y alrededor de 100.000 en Canadá.... Más
El primer ultrasonido inalámbrico, portátil y de cuerpo entero con un solo transductor PZT
Los dispositivos de ultrasonido desempeñan un papel vital en el campo de la medicina, utilizándose rutinariamente para examinar los tejidos y estructuras internas del cuerpo. Si bien los avances han mejorado... MásMedicina Nuclear
ver canal
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más
Técnica innovadora de imágenes PET ayuda a diagnosticar la neurodegeneración
Las enfermedades neurodegenerativas, como la esclerosis lateral amiotrófica (ELA) y la enfermedad de Alzheimer, suelen diagnosticarse solo después de que aparecen los síntomas físicos,... MásImaginología General
ver canal
Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
El cáncer de pulmón sigue siendo una de las enfermedades más difíciles de abordar, lo que hace que el diagnóstico temprano sea fundamental para un tratamiento eficaz.... Más
TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
Las infecciones pulmonares pueden poner en peligro la vida de los pacientes con sistemas inmunitarios debilitados, por lo que el diagnóstico oportuno es crucial. Si bien las tomografías computarizadas... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más