Herramienta de IA predice riesgo de cáncer de pulmón a partir de TC de tórax de dosis baja
Por el equipo editorial de MedImaging en español Actualizado el 17 Jan 2023 |

El cáncer de pulmón es la principal causa de muerte por cáncer en el mundo. Se recomienda la tomografía computarizada de dosis baja (TCBD) de tórax para evaluar a las personas en el grupo etario de 50 a 80 años que tienen un historial significativo de tabaquismo o que actualmente fuman. Los estudios han demostrado que la detección con TCBD puede reducir el riesgo de muerte por cáncer de pulmón hasta en un 24 %. Sin embargo, con el aumento de las tasas de cáncer de pulmón entre los no fumadores, existe la necesidad de nuevas estrategias para detectar y predecir con precisión el riesgo de cáncer de pulmón entre una población más amplia. Ahora, los investigadores han desarrollado y probado una herramienta de inteligencia artificial (IA) que predice con precisión el riesgo de cáncer de pulmón para las personas con o sin un historial significativo de tabaquismo en función del análisis de las exploraciones TCBD de los pacientes.
Con el fin de ayudar a mejorar la eficiencia de la detección del cáncer de pulmón y proporcionar evaluaciones individualizadas, investigadores del Mass General Cancer Center (Boston, MA, EUA), en colaboración con investigadores del Instituto Tecnológico de Massachusetts (MIT, Cambridge, MA, EUA) , han desarrollado Sybil, un modelo de aprendizaje profundo que analiza los escaneos y predice el riesgo de cáncer de pulmón para los próximos uno a seis años. En su estudio, el equipo validó Sybil utilizando tres conjuntos de datos independientes: un conjunto de escaneos de más de 6.000 participantes de NLST (estudio nacional de detección pulmonar de EUA) que Sybil no había visto antes; 8.821 TCBD de EUA; y 12.280 TCBD de Taiwán. El último conjunto de escaneos incluyó a personas con una variedad de antecedentes de tabaquismo, incluidos aquellos que nunca fumaron.
Los investigadores encontraron que Sybil podía predecir con precisión el riesgo de cáncer de pulmón en estos conjuntos. El equipo determinó la precisión de Sybil utilizando el área bajo la curva (AUC), que mide qué tan bien una prueba distingue entre muestras enfermas y normales y en la que 1.0 se considera una puntuación perfecta. Sybil pudo predecir el cáncer en un rango de un año con AUC de 0,92 para los participantes adicionales del NLST, 0,86 para el conjunto de datos del MGH y 0,94 para el conjunto de datos de Taiwán. Sybil predijo el cáncer de pulmón dentro de los seis años con AUC de 0,75, 0,81 y 0,80, respectivamente, para los tres conjuntos de datos. Los investigadores ahora comenzarán un ensayo clínico prospectivo para probar Sybil en el mundo real y ver cómo puede ayudar a los radiólogos.
"Sybil requiere solo una TCBD y no depende de los datos clínicos ni de las anotaciones del radiólogo", dijo el coautor Florian Fintelmann, MD, del Departamento de Radiología, División de Imagen e Intervención Torácica del Hospital General de Massachusetts. "Fue diseñado para ejecutarse en tiempo real en el fondo de una estación de lectura de radiología estándar que permite el soporte de decisiones clínicas en el punto de atención".
Últimas Imaginología General noticias
- Sistema de imágenes impulsado por IA mejora el diagnóstico del cáncer de pulmón
- Modelo de IA mejora las capacidades de la tomografía computarizada de baja dosis
- TC de dosis ultra baja ayuda en el diagnóstico de neumonía en pacientes inmunocomprometidos
- La IA reduce la carga de trabajo en la detección de cáncer de pulmón por TC en casi un 80 %.
- Tecnología de vanguardia combina luz y sonido para monitorear ACV en tiempo real
- Sistema de IA detecta cambios sutiles en una serie de imágenes médicas a lo largo del tiempo
- Nueva técnica de TC mejora el pronóstico y los tratamientos del cáncer de cabeza y cuello
- Primer escáner de TC de cuerpo entero móvil proporcionará diagnósticos en el punto de atención
- Tomografías computarizadas completas pueden identificar aterosclerosis en pacientes con cáncer de pulmón
- La IA mejora la detección del cáncer colorrectal en tomografías computarizadas de rutina
- Tecnología de superresolución mejora imagenes clínicas ósea para predecir el riesgo de fracturas osteoporóticas
- Mapa abdominal impulsado por IA permite la detección temprana del cáncer
- Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas
- La IA predice el riesgo cardiovascular a partir de tomografías computarizadas
- Algoritmos de aprendizaje profundo mejoran la detección de tumores en exploraciones PET/TC
- Nueva tecnología proporciona puntuación de calcificación de las arterias coronarias en TC de tórax
Canales
Radiografía
ver canal
Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP
La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más
Mayor uso de radiografías de tórax permite detectar el cáncer de pulmón en etapas tempranas
El cáncer de pulmón sigue siendo la principal causa de muerte por cáncer en todo el mundo. Si bien tecnologías avanzadas como la tomografía computarizada (TC) desempeñan... Más
Las mamografías impulsadas por IA predicen el riesgo cardiovascular
Los Centros para el Control y la Prevención de Enfermedades de Estados Unidos recomiendan que las mujeres de mediana edad o mayores se sometan a una mamografía (una radiografía de la mama) cada uno o dos... Más
Modelo de IA generativa reduce significativamente el tiempo de lectura de radiografías de tórax
La interpretación rápida y precisa de las imágenes radiológicas es crucial debido a su impacto significativo en los resultados del paciente, ya que los errores en la interpretación pueden llevar a cambios... MásRM
ver canal
Imágenes por RM ultrapotentes permiten cirugías en pacientes con epilepsia resistente al tratamiento
Aproximadamente 360.000 personas en el Reino Unido padecen epilepsia focal, una afección en la que las convulsiones se propagan desde una parte del cerebro. Alrededor de un tercio de estos pacientes... Más
Tecnología de resonancia magnética impulsada por IA mejora el diagnóstico de Parkinson
Las investigaciones actuales muestran que la precisión del diagnóstico de la enfermedad de Parkinson suele oscilar entre el 55% y el 78% durante los primeros cinco años de evaluación.... MásUltrasonido
ver canal
Un pequeño robot magnético realiza escaneos 3D desde lo más profundo del cuerpo
El cáncer colorrectal es una de las principales causas de mortalidad por cáncer en todo el mundo. Sin embargo, si se detecta a tiempo, es altamente tratable. Ahora, una nueva técnica mínimamente invasiva... Más
Ultrasonido de alta resolución acelera el diagnóstico del cáncer de próstata
Cada año, se realizan aproximadamente un millón de biopsias de cáncer de próstata en Europa, con cifras similares en Estados Unidos y alrededor de 100.000 en Canadá.... Más
El primer ultrasonido inalámbrico, portátil y de cuerpo entero con un solo transductor PZT
Los dispositivos de ultrasonido desempeñan un papel vital en el campo de la medicina, utilizándose rutinariamente para examinar los tejidos y estructuras internas del cuerpo. Si bien los avances han mejorado... MásMedicina Nuclear
ver canal
Nuevo radiotrazador identifica biomarcador para el cáncer de mama triple negativo
El cáncer de mama triple negativo (CMTN), que representa entre el 15 % y el 20 % de todos los casos de cáncer de mama, es uno de los subtipos más agresivos, con una tasa de supervivencia a cinco años de... Más
Técnica innovadora de imágenes PET ayuda a diagnosticar la neurodegeneración
Las enfermedades neurodegenerativas, como la esclerosis lateral amiotrófica (ELA) y la enfermedad de Alzheimer, suelen diagnosticarse solo después de que aparecen los síntomas físicos,... MásTI en Imaginología
ver canal
Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles
Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Plataforma para el manejo de imágenes agiliza los planes de tratamiento
Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... MásUna red global nueva mejora el acceso a la comprensión diagnóstica
Quest Diagnostics (Madison, NJ, EUA), un proveedor líder de servicios de información de diagnóstico, junto con otros proveedores de servicios de diagnóstico, ha anunciado la formación y el lanzamiento de la Red de Diagnóstico Global (GDN), un grupo de... Más
Una estación de trabajo nuevo apoya el flujo de trabajo de la imagenología pensando en los clientes
Una estación de trabajo de imagenología nueva ofrece una interfaz única e intuitiva para la toma eficiente de radiografías, fluoroscopias, mamografías y la toma de imágenes de las piernas/columna vertebral... MásIndustria
ver canal
Colaboración entre GE HealthCare y NVIDIA para reinventar la imagenología diagnóstica
GE HealthCare (Chicago, IL, EUA) ha iniciado un proceso de colaboración con NVIDIA (Santa Clara, CA, EUA), ampliando la relación existente entre las dos empresas para centrarse en la innovación... Más
Siemens y Sectra colaboran en la mejora de los flujos de trabajo en radiología
Siemens Healthineers (Forchheim, Alemania) y Sectra (Linköping, Suecia) han iniciado una colaboración destinada a mejorar las capacidades de diagnóstico de los radiólogos y, a... Más